cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349936 Central pentanomial coefficients.

This page as a plain text file.
%I A349936 #14 Dec 09 2021 06:02:45
%S A349936 1,5,85,1751,38165,856945,19611175,454805755,10651488789,251345549849,
%T A349936 5966636799745,142330448514875,3408895901222375,81922110160246231,
%U A349936 1974442362935339179,47705925773278538281,1155170746105476171285,28025439409568101909625,681077893998769910221225
%N A349936 Central pentanomial coefficients.
%C A349936 Largest coefficient of (Sum_{j=0..4} x^j)^(2*n).
%H A349936 Vaclav Kotesovec, <a href="/A349936/b349936.txt">Table of n, a(n) for n = 0..200</a>
%F A349936 a(n) = T(2*n, 4*n, 4), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
%F A349936 a(n) = A035343(2*n, 4*n) = [x^(4*n)] (Sum_{j=0..4} x^j)^(2*n).
%F A349936 From _Vaclav Kotesovec_, Dec 09 2021: (Start)
%F A349936 Recurrence: 2*n*(2*n - 1)*(3*n - 4)*(4*n - 7)*(4*n - 3)*(4*n - 1)*(6*n - 13)*(6*n - 7)*a(n) = 3*(4*n - 7)*(6*n - 13)*(10584*n^6 - 47628*n^5 + 84190*n^4 - 73965*n^3 + 33531*n^2 - 7272*n + 570)*a(n-1) - 75*(n-1)*(2*n - 3)*(4*n - 5)*(6*n - 1)*(504*n^4 - 2520*n^3 + 4160*n^2 - 2525*n + 476)*a(n-2) + 625*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(3*n - 1)*(4*n - 3)*(6*n - 7)*(6*n - 1)*a(n-3).
%F A349936 a(n) ~ 25^n / sqrt(8*Pi*n). (End)
%t A349936 T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; Table[T[2n,4n,4],{n,0,18}]
%Y A349936 Central coefficients in triangle A035343.
%Y A349936 Column s = 4 in A349933.
%Y A349936 Cf. A005721, A063419, A082758.
%K A349936 nonn,easy
%O A349936 0,2
%A A349936 _Stefano Spezia_, Dec 06 2021