This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349938 #10 Dec 11 2021 02:10:22 %S A349938 2275,11275,16443,34263,42775,42955,47955,49075,49383,53163,55683, %T A349938 58075,61623,69795,70315,70735,71643,76323,77875,83235,88443,90963, %U A349938 100375,102555,103383,107523,108295,110955,112723,113155,113575,120783,124315,127015,128945,136323 %N A349938 Odd numbers k > 1 such that A309906(k-1) < A309906(k) > A309906(k+1) < A309906(k+2) > A309906(k+3). %C A349938 Conjecturally, odd numbers k > 1 such that liminf_{n->oo} d(p(n)^(k-1)-1) < liminf_{n->oo} d(p(n)^k-1) > liminf_{n->oo} d(p(n)^(k+1)-1) < liminf_{n->oo} d(p(n)^(k+2)-1) > liminf_{n->oo} d(p(n)^(k+3)-1), where p(n) = prime(n), d = A000005. %C A349938 Odd numbers k such that both k and k+2 are in A349937. %C A349938 What's the smallest term congruent to 5 modulo 6? That is to say, what's the smallest k such that both k and k+2 are in A349941? %H A349938 Jianing Song, <a href="/A349938/b349938.txt">Table of n, a(n) for n = 1..414</a> (all terms <= 10^6) %o A349938 (PARI) isA349938(k) = if(k%2&&k>1, my(v=vector(5, n, A309906(k-2+n))); v[2]>v[1] && v[2]>v[3] && v[4]>v[3] && v[4]>v[5], 0) \\ See A309906 for its program %Y A349938 Cf. A309906, A349937. %K A349938 nonn %O A349938 1,1 %A A349938 _Jianing Song_, Dec 05 2021