cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349943 Number of ways to write n as a^4 + (b^4 + c^2 + d^2)/9, where a,b,c,d are nonnegative integers with c <= d.

Original entry on oeis.org

1, 3, 5, 4, 3, 4, 3, 1, 1, 6, 9, 6, 2, 4, 7, 3, 3, 7, 9, 7, 7, 5, 4, 2, 3, 10, 11, 8, 2, 10, 10, 1, 5, 9, 15, 14, 6, 5, 5, 1, 4, 9, 12, 8, 2, 11, 7, 1, 4, 11, 21, 8, 6, 9, 8, 3, 3, 7, 9, 9, 4, 11, 9, 2, 3, 13, 14, 7, 7, 10, 10, 4, 3, 10, 18, 16, 3, 10, 7, 1, 4, 10, 15, 12, 11, 12, 11, 3, 3, 16, 29, 17, 5, 6, 14, 10, 3, 10, 18, 15, 14
Offset: 0

Views

Author

Zhi-Wei Sun, Dec 05 2021

Keywords

Comments

Conjecture 1: a(n) > 0 for all n >= 0, and a(n) = 1 only for n = 0, 16^k*m (k = 0,1,2,... and m = 7, 8, 31, 39, 47, 79, 519).
This implies that each nonnegative rational number can be written as x^4 + 9*y^4 + z^2 + w^2 with x,y,z,w rational numbers.
Conjecture 2: Each n = 0,1,2,... can be written as a^4 + (4*b^4 + c^2 + d^2)/81 with a,b,c,d nonnegative integers.
This implies that each nonnegative rational number can be written as x^4 + 4*y^4 + z^2 + w^2 with x,y,z,w rational numbers.
We have verified Conjectures 1 and 2 for n <= 10^5.
It seems that each n = 0,1,2,... can be written as a^4 + (b^4 + c^2 + d^2)/m^2 with a,b,c,d nonnegative integers, provided that m is among the odd numbers 7, 11, 15, 17, 19, 21, ....
See also A349942 for a similar conjecture.

Examples

			a(7) = 1 with 7 = 1^4 + (1^4 + 2^2 + 7^2)/9.
a(8) = 1 with 8 = 0^4 + (0^4 + 6^2 + 6^2)/9.
a(31) = 1 with 31 = 1^4 + (1^4 + 10^2 + 13^2)/9.
a(39) = 1 with 39 = 1^4 + (3^4 + 6^2 + 15^2)/9.
a(47) = 1 with 47 = 1^4 + (3^4 + 3^2 + 18^2)/9.
a(79) = 1 with 79 = 1^4 + (1^4 + 5^2 + 26^2)/9.
a(519) = 1 with 519 = 1^4 + (3^4 + 15^2 + 66^2)/9.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[9(n-x^4)-y^4-z^2],r=r+1],{x,0,n^(1/4)},{y,0,(9(n-x^4))^(1/4)},{z,0,Sqrt[(9(n-x^4)-y^4)/2]}];tab=Append[tab,r],{n,0,100}];Print[tab]