cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349947 Triangular array: row n gives the positions of n+1 in A349946.

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 6, 7, 10, 16, 8, 11, 12, 17, 25, 13, 14, 18, 19, 26, 36, 15, 20, 21, 27, 28, 37, 49, 22, 23, 29, 30, 38, 39, 50, 64, 24, 31, 32, 40, 41, 51, 52, 65, 81, 33, 34, 42, 43, 53, 54, 66, 67, 82, 100, 35, 44, 45, 55, 56, 68, 69, 83, 84, 101, 121
Offset: 1

Views

Author

Clark Kimberling, Dec 07 2021

Keywords

Comments

Every positive integer occurs exactly once, so as a sequence, this is a permutation of the positive integers.
Row n ends in n^2. The first term in row n is (1 + n/1)^2 - 3 if n >= 4 and n is even; as in A028872(n) for n >= 3.
The first term in row n is ((n+1)/2)^2 - 1 if n >= 3 and n is odd, as in A132411(n) for n >= 3.

Examples

			First 7 rows:
   1
   2   4
   3   5   9
   6   7  10  16
   8  11  12  17  25
  13  14  18  19  26  36
  14  20  21  27  28  37  49
		

Crossrefs

Programs

  • Mathematica
    t = {1, 1}; Do[t = Join[t, Riffle[Range[n], n], {n}], {n, 2, 100}];
    u = Flatten[Partition[t, 2]];
    v = Table[n (n + 1), {n, 1, 80}];
    d = Delete[u, Map[{#} &, v]]; (* A349526 *)
    p = Table[{d[[n]], d[[n + 1]]}, {n, 1, 150}];
    q = Map[Total, p]  (* A349946 *)
    r = Table[Flatten[Position[q, n]], {n, 2, 12}]  (* A349947 array *)
    Flatten[r]  (* A349947 sequence *)