cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349954 a(n) is the number of extrema that result from iterating the reduced Collatz function R(k) = A139391(k) on 2n-1 to yield 1.

This page as a plain text file.
%I A349954 #21 Mar 16 2022 02:54:46
%S A349954 0,2,1,2,3,2,1,2,1,4,1,2,5,20,3,18,5,2,3,8,19,4,1,18,3,4,1,20,5,8,3,
%T A349954 18,3,6,1,18,21,2,3,6,3,20,1,4,7,16,3,18,21,4,5,14,7,18,19,10,1,4,3,6,
%U A349954 17,12,19,4,21,4,5,6,15,10,1,18,19,22,3,2,5,14
%N A349954 a(n) is the number of extrema that result from iterating the reduced Collatz function R(k) = A139391(k) on 2n-1 to yield 1.
%C A349954 The trajectory starts with a minimum for odd n and with a maximum (see A351974) for even n (>=2). Since the trajectory always stops at 1 (a minimum) assuming the Collatz conjecture holds, a(n) is odd if n is odd and vice versa.
%e A349954 a(10) = 4 because 2n+1 = 19 and iterating R on 19 gives 4 extrema:
%e A349954 19 -> 29 -> 11 -> 17 -> 1
%e A349954       max   min   max   min.
%e A349954 The corresponding path of n, 10 -> 15 -> 6 -> 9 -> 1, is shown in the tree below, where the paths for n up to 100 are given and a(n) is the depth from n to 1.
%e A349954                                        n                                      a(n)
%e A349954 ----------------------------------------------------------------------------- ----
%e A349954                                                     98     74                  22
%e A349954                                              37 49 147 65 111                  21
%e A349954                         14                86  \__\__28_/   42  100             20
%e A349954                      95 21  55 73 83  97 129        63_____/   225             19
%e A349954                   54 36  \___\__\__\___\__16        24          48  32 72      18
%e A349954                    \__\____________________\________81     61  243__/__/       17
%e A349954                                                      \______\___46  92         16
%e A349954                                                                 69 207         15
%e A349954                                                                 52  78         14
%e A349954                                                                117__/          13
%e A349954                                       62                        88             12
%e A349954                                       93                       297             11
%e A349954                                       70            94          84  56         10
%e A349954                                      105  79       141         189__/           9
%e A349954                                   20  30__/        106         142              8
%e A349954                                    \__45           159 53      213              7
%e A349954          68                           34            60 40  90  160  80          6
%e A349954      29 153    77           85    13  51  17 67 89 135_/___/  1215 405          5
%e A349954       \__22 50 58 44 66 26  64 96  \__10__/__/__/__/       82  456 304          4
%e A349954 5 19 25  33 75 87 99_/  39 729_/  59  15               47 123 1539__/  31 41    3
%e A349954 \__\__\___\__\__\__4     \___6____/___/   76 38  2   8 18   \___12_____/__/     2
%e A349954                    \_________9 11 43  71 171 57  3   \__\_______27  91 35 23 7  1
%e A349954                              \__\__\___\___\__\__\_______________1__/__/__/__/  0
%o A349954 (Python)
%o A349954 def R(k): c = 3*k+1; return c//(c&-c)
%o A349954 def A349954(n):
%o A349954     if n == 1: return 0
%o A349954     ct = 1; m = R(2*n-1); d = m - 2*n + 1
%o A349954     while m > 1:
%o A349954         if (R(m) - m)*d < 0: ct += 1; d = -d
%o A349954         m = R(m)
%o A349954     return ct
%Y A349954 Cf. A075677, A075680, A122458, A139391, A256598, A351974.
%K A349954 nonn
%O A349954 1,2
%A A349954 _Ya-Ping Lu_, Mar 11 2022