A349955 Numbers whose representation in any base b >= 2 is a cubefree word.
0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 18, 19, 20, 22, 25, 36, 37, 38, 44, 45, 50, 51, 52, 74, 75, 76, 77, 89, 90, 100, 101, 102, 105, 109, 147, 150, 153, 154, 165, 166, 173, 178, 179, 180, 181, 204, 205, 210, 214, 217, 293, 294, 300, 301, 306, 308, 309, 329, 330
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Cubefree Word.
Programs
-
Mathematica
Prepend[Cases[Range[330], n_ /; NoneTrue[Range[2, (Sqrt[4 n - 3] - 1)/2], MatchQ[IntegerDigits[n, #], {_, d__, d__, d__, _}] &]], 0]
-
Python
from sympy.ntheory.digits import digits def hascube(s): for l in range(1, len(s)//3 + 1): for i in range(len(s) - 3*l + 1): if s[i:i+l] == s[i+l:i+2*l] == s[i+2*l:i+3*l]: return True return False def ok(n): if n < 7: return True b = 2 d = digits(n, b)[1:] while len(d) >= 3: if hascube(d): return False b += 1 d = digits(n, b)[1:] return True print([k for k in range(331) if ok(k)]) # Michael S. Branicky, Mar 27 2022
Comments