This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349958 #70 Jul 28 2024 10:07:13 %S A349958 0,2,3,4,5,4,7,8,9,5,11,9,13,8,6,16,17,9,19,6,7,11,23,10,25,13,27,8, %T A349958 29,10,31,32,11,17,7,9,37,19,13,10,41,9,43,12,10,23,47,16,49,25,18,13, %U A349958 53,27,11,8,19,29,59,10,61,32,9,64,13,11,67,17,23,8,71,12,73,37,25 %N A349958 a(n) is the index of the first row in Pascal's triangle that contains a multiple of n. %C A349958 a(n) is the minimum j such that binomial(j,k) is divisible by n for some k in 0..j. %C A349958 a(n) is at most equal to A058084(n), the least m such that binomial(m,k) = n for some k. %H A349958 Rémy Sigrist, <a href="/A349958/b349958.txt">Table of n, a(n) for n = 1..10000</a> %e A349958 In the table below, the k value shown is the minimum k such that n divides binomial(a(n), k). %e A349958 . %e A349958 n a(n) k C(a(n), k) %e A349958 -- ---- - ---------- %e A349958 1 0 0 1 %e A349958 2 2 1 2 %e A349958 3 3 1 3 %e A349958 4 4 1 4 %e A349958 5 5 1 5 %e A349958 6 4 2 6 %e A349958 7 7 1 7 %e A349958 8 8 1 8 %e A349958 9 9 1 9 %e A349958 10 5 2 10 %e A349958 11 11 1 11 %e A349958 12 9 2 36 %e A349958 . %e A349958 The table below shows the left half (and middle column) of rows j = 0..12 of Pascal's triangle; each number in parentheses there is the first term encountered in Pascal's triangle (read by rows from left to right) that is a multiple of some number n in 1..12, and the corresponding term of {a(n)} whose value is j appears in the column at the right. %e A349958 E.g., the first multiple of 12 encountered in Pascal's triangle is binomial(9,2) = 36; it appears in row 9, so a(12) = 9, and the column at the right includes a(12) in row 9. %e A349958 | terms in a(1)..a(12) %e A349958 j | left half of row j of Pascal's triangle | that are equal to j %e A349958 ---+-----------------------------------------+--------------------- %e A349958 0 | (1) | a(1) = 0 %e A349958 1 | 1 | %e A349958 2 | 1 (2) | a(2) = 2 %e A349958 3 | 1 (3) | a(3) = 3 %e A349958 4 | 1 (4) (6) | a(4), a(6) = 4 %e A349958 5 | 1 (5) (10) | a(5), a(10) = 5 %e A349958 6 | 1 6 15 20 | %e A349958 7 | 1 (7) 21 35 | a(7) = 7 %e A349958 8 | 1 (8) 28 56 70 | a(8) = 8 %e A349958 9 | 1 (9) (36) 84 126 | a(9), a(12) = 9 %e A349958 10 | 1 10 45 120 210 252 | %e A349958 11 | 1 (11) 55 165 330 462 | a(11) = 11 %e A349958 12 | 1 12 66 210 496 792 924 | %t A349958 a[n_] := Module[{k = 0}, While[!AnyTrue[Binomial[k, Range[0, Floor[k/2]]], Divisible[#, n] &], k++]; k]; Array[a, 75] (* _Amiram Eldar_, Dec 07 2021 *) %o A349958 (Python) %o A349958 import numpy as np %o A349958 def pascals(n): %o A349958 a = np.ones(1) %o A349958 f = np.ones(2) %o A349958 triangle = [a] %o A349958 for i in range(n): %o A349958 a = np.convolve(a,f) %o A349958 triangle.append(a) %o A349958 return triangle %o A349958 def test(n,tri): %o A349958 for i, element in enumerate(tri): %o A349958 for sub_e in element: %o A349958 if sub_e % n == 0: %o A349958 return i %o A349958 tri = pascals(500) %o A349958 for i in range(1,50): %o A349958 print(test(i,tri),end=',') %o A349958 (Python) %o A349958 from math import comb %o A349958 def A349958(n): %o A349958 for j in range(n+1): %o A349958 for k in range(j+1): %o A349958 if comb(j,k) % n == 0: return j # _Chai Wah Wu_, Dec 10 2021 %o A349958 (PARI) a(n) = my(k=0); while (!#select(x->(x==1), apply(denominator, vector((k+2)\2, i, binomial(k, i-1))/n)), k++); k; \\ _Michel Marcus_, Dec 07 2021 %o A349958 (PARI) a(n) = { my (r = [1 % n]); for (i = 0, oo, if (vecmin(r)==0, return (i), r = (concat(0, r) + concat(r, 0)) % n;);); } %Y A349958 Cf. A007318, A058084, A374959. %K A349958 nonn %O A349958 1,2 %A A349958 _Nathan M Epstein_, Dec 06 2021 %E A349958 More terms from _Michel Marcus_, Dec 07 2021