cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A349960 Values taken by the function A067095 in the order of their appearance.

This page as a plain text file.
%I A349960 #75 Dec 13 2021 03:08:15
%S A349960 2,1,18,181,1817,18175,181757,1817571,18175719,181757197,1817571972,
%T A349960 18175719727,181757197277,1817571972772,18175719727727,
%U A349960 181757197277277,1817571972772779,18175719727727795,181757197277277957,1817571972772779572,18175719727727795720,181757197277277957202
%N A349960 Values taken by the function A067095 in the order of their appearance.
%C A349960 a(2) < a(1), but thereafter this function increases monotonically without limit (see Krusemeyer reference).
%C A349960 The record values > 2 of A067095(m) occur when m = 5, 50, 500, 5000, .... This happens precisely when the corresponding numerator A019520(m) goes from 2/4/6/8/10/12/....../999...98 to 2/4/6/8/10/12/....../999...98/1000...00, where here / means concatenation.
%C A349960 If a(n) is a k-digit number (k = A055642(a(n))), then 1.8 * 10^(k-1) < a(n) < 1.9 * 10^(k-1).
%C A349960 If we consider the sequence u(n) = a(n)/10^(k-1) where k = length(a(n)); we have u(n) is increasing with an upper bound 1.9; so, this sequence u(n) is convergent and, conjecture, this limit = 1.81757197277277957... found by _Giorgos Kalogeropoulos_; now, from this limit, it is possible to get the successive terms of this sequence here.
%D A349960 Mark I. Krusemeyer, George T. Gilbert and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
%H A349960 Chai Wah Wu, <a href="/A349960/b349960.txt">Table of n, a(n) for n = 1..1001</a>
%F A349960 a(n) = floor(k((n + 6)/2)*10^(n - 1 - ceiling(log_10(k((n + 6)/2))))) for k(n) = A019520(n)/A019519(n) and n >= 2 (conjectured). - _Giorgos Kalogeropoulos_, Dec 10 2021
%e A349960 Floor(A019520(5)/A019519(5)) = floor(246810/13579) = floor(18.175859...) = 18, hence, 18 is a term.
%t A349960 terms=5; f[i_]:=FromDigits@Flatten[IntegerDigits/@i];
%t A349960 k[q_]:=f[Range[2,2q,2]]/f[Range[1,2q,2]];
%t A349960 DeleteDuplicates@Table[Floor[k@n],{n,10^(terms-2)/2}] (* _Giorgos Kalogeropoulos_, Dec 10 2021 *)
%o A349960 (Python)
%o A349960 def A349960(n): return 3-n if n <= 2 else int("".join(str(d) for d in range(2,10**(n-2)+1,2)))//int("".join(str(d) for d in range(1,10**(n-2),2))) # _Chai Wah Wu_, Dec 10 2021
%o A349960 from itertools import count
%o A349960 def A349960(n): # a more efficient implementation
%o A349960     if n <= 2:
%o A349960         return 3-n
%o A349960     a, b = '', ''
%o A349960     for i in count(1,2):
%o A349960         a += str(i)
%o A349960         b += str(i+1)
%o A349960         ai, bi = int(a), int(b)
%o A349960         if len(a)+n-2 == len(b): return bi//ai
%o A349960         m = 10**(n-2-len(b)+len(a))
%o A349960         lb = bi*m//(ai+1)
%o A349960         ub = (bi+1)*m//ai
%o A349960         if lb == ub: return lb # _Chai Wah Wu_, Dec 10 2021
%Y A349960 Cf. A019519, A019520, A055642, A067095.
%K A349960 nonn,base
%O A349960 1,1
%A A349960 _Bernard Schott_, Dec 07 2021
%E A349960 a(5)-a(7) from _Michel Marcus_, Dec 07 2021
%E A349960 a(8)-a(9) from _Martin Ehrenstein_, Dec 10 2021
%E A349960 a(10)-a(22) from _Chai Wah Wu_, Dec 10 2021