cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A349987 Numbers that can be represented in more than one way as p^2+p*q+q^2 with p and q primes, p<=q.

Original entry on oeis.org

147, 903, 1911, 3667, 3913, 4627, 5187, 8103, 10137, 11613, 12999, 13117, 13467, 14313, 16023, 16887, 18723, 19047, 19747, 20397, 22197, 23107, 24307, 25833, 28227, 30457, 30847, 31827, 32403, 37947, 38703, 39819, 45163, 46543, 50407, 57603, 58813, 61383, 63147, 68367, 68403, 70707, 71337, 74973
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 09 2022

Keywords

Examples

			a(3) = 1911 is a term because 1911 = 5^2+5*41+41^2 = 19^2+19*31+31^2 where 5, 41, 19 and 31 are primes.
		

Crossrefs

Subsequence of A024614.
Cf. A349986.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]):
    nP:= nops(P):
    S:= {}: T:= {}:
    for i from 1 to nP do
      for j from 1 to i do
        x:= P[i]^2 + P[i]*P[j]+P[j]^2;
        if x > N then break fi;
        if member(x,S) then T:= T union {x} fi;
        S:= S union {x};
    od od:
    sort(convert(T,list));
  • Mathematica
    Do[If[Total@Boole[And@@@PrimeQ[{p,q}/.Solve[p^2+p*q+q^2==k&&p>1&&p<=q,{p,q},Integers]]]>1,Print@k],{k,10^6}] (* Giorgos Kalogeropoulos, Jan 09 2022 *)
Showing 1-1 of 1 results.