This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A349989 #30 Feb 24 2022 03:10:26 %S A349989 4,3,1,113,2,3,3,19,1,1,4,113,4,3,1,765,4,3,4,87,1,3,4,19,2,2,1,28,4, %T A349989 1,4,151,1,3,2,113,4,3,1,19,4,3,4,113,1,3,4,335,3,1,1,113,4,3,1,19,1, %U A349989 3,4,87,4,3,1,379,2,3,4,1,1,1,4,19,4,3,1,113,3,1,4 %N A349989 a(n) is the smallest k such that k^n + (k+1)^n is divisible by a square > 1. %C A349989 a(64) <= 379; a(76) <= 113. Terms a(65)..a(79): 2, 3, 4, 1, 1, 1, 4, 19, 4, 3, 1, a(76), 3, 1, 4. %C A349989 At k=4, k^n + (k+1)^n = 4^n + 5^n is a multiple of 9 for all odd n, and at k=3, k^n + (k+1)^n = 3^n + 4^n is a multiple of 25 for all n == 2 (mod 4). Thus, a(n) <= 4 if n is not a multiple of 4. %H A349989 Kevin P. Thompson, <a href="/A349989/a349989.txt">Factorizations to support a(n) for n = 1..79</a> %F A349989 a(n) = A289629(n) if n is even. %F A349989 a(k) = 1 for k in A049096. %F A349989 a(n) <= 4 if 4 does not divide n; among terms where 4 divides n, certain terms appear repeatedly. E.g., %F A349989 a(n) <= 113 for n == 4 (mod 8): for all such n, 17^2 divides 113^n + 114^n; %F A349989 a(n) <= 19 for n == 8 (mod 16): for all such n, 17^2 divides 19^n + 20^n; %F A349989 a(n) <= 765 for n == 16 (mod 32): for all such n, 97^2 divides 765^n + 766^n; %F A349989 a(n) <= 87 for n == 20 (mod 40): for all such n, 41^2 divides 87^n + 88^n; %F A349989 a(n) <= 28 for n == 68 (mod 136): for all such n, 17^2 divides 28^n + 29^n; %F A349989 a(n) <= 151 for n == 32 (mod 64): for all such n, 257^2 divides 151^n + 152^n; %F A349989 a(n) <= 335 for n == 48 (mod 96): for all such n, 769^2 divides 335^n + 336^n. %o A349989 (PARI) a(n) = my(k=1); while(issquarefree(k^n + (k+1)^n), k++); k; \\ _Michel Marcus_, Dec 09 2021 %o A349989 (Python) %o A349989 from sympy.ntheory.factor_ import core %o A349989 def squarefree(n): return core(n, 2) == n %o A349989 def a(n): %o A349989 k = 1 %o A349989 while squarefree(k**n + (k+1)**n): k += 1 %o A349989 return k %o A349989 print([a(n) for n in range(1, 16)]) # _Michael S. Branicky_, Dec 09 2021 %Y A349989 Cf. A280302, A280547, A289629, A289985, A349988. %K A349989 nonn %O A349989 1,1 %A A349989 _Jon E. Schoenfield_, Dec 07 2021 %E A349989 a(64)-a(79) from _Kevin P. Thompson_, Feb 23 2022