A349992 Number of ways to write n as x^4 + y^2 + (z^2 + 2*4^w)/3, where x, y, z are nonnegative integers, and w is 0 or 1.
1, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 2, 2, 2, 4, 8, 7, 7, 6, 5, 6, 6, 6, 8, 7, 8, 6, 1, 4, 2, 6, 8, 6, 7, 5, 7, 6, 6, 6, 7, 7, 8, 7, 3, 5, 3, 4, 6, 6, 6, 7, 5, 3, 5, 4, 9, 8, 9, 8, 2, 4, 1, 2, 9, 8, 10, 8, 4, 6, 4, 9, 6, 6, 6, 4, 2, 2, 1, 2, 10, 10, 13, 8, 9, 7, 9, 9, 7, 10, 6, 10, 4, 3, 4, 3, 11, 10, 9
Offset: 1
Keywords
Examples
a(30) = 1 with 30 = 1^4 + 5^2 + (2^2 + 2*4)/3. a(480) = 1 with 480 = 1^4 + 14^2 + (29^2 + 2*4)/3. a(847) = 1 with 847 = 0^4 + 29^2 + (4^2 + 2*4^0)/3. a(3497) = 1 with 3497 = 4^4 + 48^2 + (53^2 + 2*4^0)/3. a(13582) = 1 with 13582 = 9^4 + 28^2 + (53^2 + 2*4^0)/3. a(25630) = 1 with 25630 = 5^4 + 158^2 + (11^2 + 2*4^0)/3. a(38064) = 1 with 38064 = 3^4 + 157^2 + (200^2 + 2*4^0)/3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[3(n-x^4-y^2)-2*4^z],r=r+1],{x,0,(n-1)^(1/4)},{y,0,Sqrt[n-1-x^4]},{z,0,1}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments