A350000 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of cells in a regular n-gon after k generations of mitosis.
1, 1, 1, 1, 4, 1, 1, 4, 11, 1, 1, 4, 21, 24, 1, 1, 4, 31, 42, 50, 1, 1, 4, 41, 42, 190, 80, 1, 1, 4, 51, 42, 400, 152, 154, 1, 1, 4, 61, 42, 680, 152, 802, 220, 1, 1, 4, 71, 42, 1030, 152, 1792, 590, 375, 1, 1, 4, 81, 42, 1450, 152, 2962, 690, 2091, 444, 1
Offset: 3
Examples
The table begins: . | Number of polygons after k generations n\k | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... ---------------------------------------------------------------------------------- 3 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 4 | 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... 5 | 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, ... 6 | 1, 24, 42, 42, 42, 42, 42, 42, 42, 42, ... 7 | 1, 50, 190, 400, 680, 1030, 1450, 1940, 2500, 3130, ... 8 | 1, 80, 152, 152, 152, 152, 152, 152, 152, 152, ... 9 | 1, 154, 802, 1792, 2962, 4312, 5842, 7552, 9442, 11512, ... 10 | 1, 220, 590, 690, 790, 890, 990, 1090, 1190, 1290, ... 11 | 1, 375, 2091, 4643, 7635, 11067, 14939, 19251, 24003, 29195, ... 12 | 1, 444, 948, 948, 948, 948, 948, 948, 948, 948, ... 13 | 1, 781, 5461, 14119, 24727, 37285, 51793, 68251, 86659, 107017, ... 14 | 1, 952, 3066, 4046, 5026, 6006, 6986, 7966, 8946, 9926, ... 15 | 1, 1456, 9361, 22756, 40186, 61066, 85396, 113176, 144406, 179086, ... 16 | 1, 1696, 6096, 8240, 9520, 10800, 12080, 13360, 14640, 15920, ... 17 | 1, 2500, 18225, 49131, 90883, 143175, 206007, 279379, 363291, 457743, ... 18 | 1, 2466, 7344, 10872, 14166, 16866, 19566, 22266, 24966, 27666, ... 19 | 1, 4029, 29356, 77616, 140316, 217456, 309036, 415056, 535516, 670416, ... 20 | 1, 4500, 19580, 31620, 39820, 48020, 56220, 64420, 72620, 80820, ... 21 | 1, 6175, 40720, 97336, 168022, 252778, 351604, 464500, 591466, 732502, ... 22 | 1, 6820, 31042, 52030, 65890, 79750, 93610, 107470, 121330, 135190, ... .
Links
- B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11, no. 1 (1998), pp. 135-156; DOI:10.1137/S0895480195281246. [Author's copy]. The latest arXiv version arXiv:math/9508209 has corrected some typos in the published version.
- Scott R. Shannon, Extended Table of A350000 for 5 <= n <= 46, Dec 22, 2021 [This shows the initial terms of the rows in human order (not by antidiagonals)]
- Scott R. Shannon, Illustration for T(9,1)
- Scott R. Shannon, T(9,2)
- Scott R. Shannon, T(9,3)
- Scott R. Shannon, T(9,4)
- Scott R. Shannon, T(10,1)
- Scott R. Shannon, T(10,2)
- Scott R. Shannon, T(10,3)
- Scott R. Shannon, T(11,1)
- Scott R. Shannon, T(11,2)
- Scott R. Shannon, T(11,3)
- Scott R. Shannon, T(14,1)
- Scott R. Shannon, T(14,2)
- Scott R. Shannon, T(14,3)
- Scott R. Shannon, T(17,3)
- Scott R. Shannon, T(29,1)
- Scott R. Shannon, Close-up of the 11-gon in T(29,1)
- Scott R. Shannon, Close-up of a 9-gon in T(29,2). This shows the mitosis of the 11-gon from generation 1 in the previous image -- it has formed one 9-gon, five 7-gons, twelve 6-gons and numerous other 5, 4, and 3-gons.
- Scott R. Shannon, Zoomed-in view of T(51,2). This shows the complicated structure formed after just 2 generations, typical of larger values of n.
- N. J. A. Sloane, Rough sketch of first few generations of mitosis of a triangle, square, pentagon, and hexagon. The central pentagonal cell of the pentagon splits into 10 triangles and a pentagon at every generation, with the cells getting smaller and smaller. The third splitting is drawn in red ink. The second splitting of the hexagon is also drawn in red ink, but then all the cells are triangles, and no further mitosis takes place.
Crossrefs
Formula
Formulas for the initial rows: (These are easy to prove.)
To avoid double subscripts, we use a(k) for T(n,k) when we are looking at row n.
n=3: a(k) = 1, for k >= 0.
n=4: a(0) = 1, a(k) = 4 for k >= 1.
n=5: a(k) = 10k+1, k >= 0. See A017281.
n=6: a(0) = 1, a(1) = 24, a(k) = 42 for k >= 2.
n=7: a(0) = 1, a(k) = 35*k^2+35*k-20 for k >= 1. See A349808.
n=8: a(0) = 1, a(1) = 80, a(k) = 152 for k >= 2.
n=9: a(0) = 1, a(1) = 154, a(k) = 90*k^2+540*k-638 for k >= 2.
n=10: a(0) = 1, a(1) = 220, a(k) = 100*k+390 for k >= 2.
n=11: a(0) = 1, a(1) = 375, a(k) = 220*k^2 + 1452*k - 1693 for k >= 2.
n=12: a(0) = 1, a(1) = 444, a(k) = 948 for k >= 2.
n=13: a(0) = 1, a(1) = 781, a(k) = 975*k^2 + 3783*k - 6005 for k >= 2.
n=14: a(0) = 1, a(k) = 980*k + 1106 for k >= 1.
n=15: a(k) = 1725*k^2+5355*k-8834 for k >= 3.
n=16: a(k) = 1280*k + 4400 for k >= 3.
n=18: a(k) = 2700*k + 3366 for k >= 4.
Also T(n,1) = A007678(n).
Comments