cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350003 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest lucky number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A000959; T(n,m) = 0 if no such number exists.

This page as a plain text file.
%I A350003 #7 Dec 12 2021 20:28:57
%S A350003 37,87,31,87,87,87,72979,17781,1263,31
%N A350003 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest lucky number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A000959; T(n,m) = 0 if no such number exists.
%C A350003 Equivalently, T(n,m) is the smallest lucky number L(k) such that there is a polynomial f of degree at most n-1 such that f(j) = L(j) for k <= j <= k+n+m.
%C A350003 T(n,m) = A000959(k), where k is the smallest positive integer such that A350001(n,k+j) = 0 for 0 <= j <= m.
%H A350003 <a href="/index/Lu#lucky_numbers">Index entries for sequences related to lucky numbers</a>
%F A350003 T(n,m) <= T(n-1,m+1).
%F A350003 T(n,m) <= T(n, m+1).
%F A350003 Sum_{j=0..n} (-1)^j*binomial(n,j)*A000959(k+i+j) = 0 for 0 <= i <= m, where A000959(k) = T(n,m).
%e A350003 Array begins:
%e A350003   n\m|        0       1        2        3
%e A350003   ---+-----------------------------------
%e A350003    2 |       37      87       87    72979
%e A350003    3 |       31      87    17781   196089
%e A350003    4 |       87    1263   196089 63955483
%e A350003    5 |       31    3687 17622975        ?
%e A350003    6 |      517  390015        ?        ?
%e A350003    7 |     1797    1797        ?        ?
%e A350003    8 |     1797 2432367        ?        ?
%e A350003    9 |      267 9157647        ?        ?
%e A350003   10 |      483 1683501        ?        ?
%e A350003 For n = 4 and m = 1, the first six (n+m+1) consecutive lucky numbers for which all fourth (n-th) differences are 0 are (1263, 1275, 1281, 1285, 1291, 1303), so T(4,1) = 1263. The successive differences are (12, 6, 4, 6, 12), (-6, -2, ,2, 6), (4, 4, 4), and (0, 0).
%Y A350003 Cf. A330362 (row n=2), A350002 (column m=0).
%Y A350003 Cf. A000959, A349644 (counterpart for primes), A350001, A350007 (counterpart for ludic numbers).
%K A350003 nonn,tabl,more
%O A350003 2,1
%A A350003 _Pontus von Brömssen_, Dec 08 2021