This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350003 #7 Dec 12 2021 20:28:57 %S A350003 37,87,31,87,87,87,72979,17781,1263,31 %N A350003 Array read by antidiagonals, n >= 2, m >= 0: T(n,m) is the smallest lucky number L(k) such that all n-th differences of (L(k), ..., L(k+n+m)) are zero, where L is A000959; T(n,m) = 0 if no such number exists. %C A350003 Equivalently, T(n,m) is the smallest lucky number L(k) such that there is a polynomial f of degree at most n-1 such that f(j) = L(j) for k <= j <= k+n+m. %C A350003 T(n,m) = A000959(k), where k is the smallest positive integer such that A350001(n,k+j) = 0 for 0 <= j <= m. %H A350003 <a href="/index/Lu#lucky_numbers">Index entries for sequences related to lucky numbers</a> %F A350003 T(n,m) <= T(n-1,m+1). %F A350003 T(n,m) <= T(n, m+1). %F A350003 Sum_{j=0..n} (-1)^j*binomial(n,j)*A000959(k+i+j) = 0 for 0 <= i <= m, where A000959(k) = T(n,m). %e A350003 Array begins: %e A350003 n\m| 0 1 2 3 %e A350003 ---+----------------------------------- %e A350003 2 | 37 87 87 72979 %e A350003 3 | 31 87 17781 196089 %e A350003 4 | 87 1263 196089 63955483 %e A350003 5 | 31 3687 17622975 ? %e A350003 6 | 517 390015 ? ? %e A350003 7 | 1797 1797 ? ? %e A350003 8 | 1797 2432367 ? ? %e A350003 9 | 267 9157647 ? ? %e A350003 10 | 483 1683501 ? ? %e A350003 For n = 4 and m = 1, the first six (n+m+1) consecutive lucky numbers for which all fourth (n-th) differences are 0 are (1263, 1275, 1281, 1285, 1291, 1303), so T(4,1) = 1263. The successive differences are (12, 6, 4, 6, 12), (-6, -2, ,2, 6), (4, 4, 4), and (0, 0). %Y A350003 Cf. A330362 (row n=2), A350002 (column m=0). %Y A350003 Cf. A000959, A349644 (counterpart for primes), A350001, A350007 (counterpart for ludic numbers). %K A350003 nonn,tabl,more %O A350003 2,1 %A A350003 _Pontus von Brömssen_, Dec 08 2021