A350012 Number of ways to write n as 4*x^4 + y^2 + (z^2 + 4^w)/2 with x,y,z,w nonnegative integers.
1, 2, 1, 1, 4, 4, 1, 3, 5, 5, 3, 3, 4, 7, 3, 2, 6, 5, 2, 4, 6, 2, 2, 5, 4, 6, 2, 2, 6, 7, 2, 2, 6, 5, 5, 4, 3, 7, 5, 5, 8, 6, 2, 6, 9, 4, 2, 4, 5, 8, 3, 3, 5, 8, 3, 6, 5, 3, 6, 4, 6, 5, 6, 1, 10, 9, 2, 6, 11, 8, 1, 7, 5, 11, 6, 4, 7, 10, 3, 6, 10, 4, 8, 8, 6, 8, 6, 5, 11, 13, 5, 1, 11, 8, 3, 4, 4, 9, 7, 6
Offset: 1
Keywords
Examples
a(1) = 4*0^4 + 0^2 + (1^2 + 4^0)/2. a(3) = 1 with 3 = 4*0^4 + 1^2 + (0^2 + 4)/2. a(4) = 1 with 4 = 4*0^4 + 0^2 + (2^2 + 4)/2. a(7) = 1 with 7 = 4*1^4 + 1^2 + (0^2 + 4)/2. a(71) = 1 with 71 = 4*1^4 + 3^2 + (10^2 + 4^2)/2. a(92) = 1 with 92 = 4*1^4 + 6^2 + (10^2 + 4)/2. a(167) = 1 with 167 = 4*1^4 + 9^2 + (10^2 + 4^3)/2. a(271) = 1 with 271 = 4*1^4 + 11^2 + (6^2 + 4^4)/2. a(316) = 1 with 316 = 4*1^4 + 4^2 + (24^2 + 4^2)/2. a(4796) = 1 with 4796 = 4*5^4 + 36^2 + (44^2 + 4^3)/2. a(14716) = 1 with 14716 = 4*5^4 + 4^2 + (156^2 + 4^3)/2. a(24316) = 1 with 24316 = 4*3^4 + 84^2 + (184^2 + 4^2)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167--190.
- Zhi-Wei Sun, Restricted sums of four squares, Int. J. Number Theory 15(2019), 1863-1893. See also arXiv:1701.05868 [math.NT].
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[2(n-4x^4-y^2)-4^z],r=r+1],{x,0,((n-1)/4)^(1/4)},{y,0,Sqrt[n-1-4x^4]},{z,0,Log[4,2(n-4x^4-y^2)]}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments