This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350014 #18 Apr 06 2022 05:56:29 %S A350014 1,4,8,9,25,27,32,36,49,64,72,100,108,121,125,169,196,200,216,225,243, %T A350014 256,288,289,343,361,392,441,484,500,512,529,576,675,676,729,800,841, %U A350014 864,900,961,968,972,1000,1089,1125,1156,1225,1323,1331,1352,1369,1372,1444 %N A350014 Numbers whose square has a number of divisors coprime to 6. %C A350014 a(n) = m in A001694 such that d(m^2) is not divisible by 3, where d(n) = A000005(n). %C A350014 Supersequence of A051676 (composite numbers whose square has a prime number of divisors). %C A350014 Subsequence of A001694 (powerful numbers). %C A350014 Numbers whose prime factorization has only exponents that are congruent to {0, 2} mod 3 (A007494). - _Amiram Eldar_, Mar 31 2022 %H A350014 Michael De Vlieger, <a href="/A350014/b350014.txt">Table of n, a(n) for n = 1..10000</a> %F A350014 a(n) = {m : gcd(d(m^2), 6) = 1}. %F A350014 Sum_{n>=1} 1/a(n) = 15*zeta(3)/Pi^2 (= 10 * A240976). - _Amiram Eldar_, Mar 31 2022 %p A350014 A350014 := proc(n) %p A350014 option remember ; %p A350014 local a; %p A350014 if n =1 then %p A350014 1; %p A350014 else %p A350014 for a from procname(n-1)+1 do %p A350014 if igcd(numtheory[tau](a^2),6) = 1 then %p A350014 return a; %p A350014 end if; %p A350014 end do: %p A350014 end if; %p A350014 end proc: %p A350014 seq(A350014(n),n=1..20) ; # _R. J. Mathar_, Apr 06 2022 %t A350014 Select[Range[1500], CoprimeQ[DivisorSigma[0, #^2], 6] &] (* or *) %t A350014 With[{nn = 1500}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], Mod[DivisorSigma[0, #^2], 3] != 0 &]] %o A350014 (PARI) isok(m) = gcd(numdiv(m^2), 6) == 1; \\ _Michel Marcus_, Mar 04 2022 %Y A350014 Cf. A000005, A000290, A007494, A001694, A001651, A051676, A240976. %K A350014 nonn,easy %O A350014 1,2 %A A350014 _Michael De Vlieger_, Jan 17 2022