This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350060 #12 Jan 12 2022 21:41:05 %S A350060 1,1,1,1,6,1,1,22,22,1,1,65,200,65,1,1,171,1265,1265,171,1,1,420,6566, %T A350060 15050,6566,420,1,1,988,30156,136346,136346,30156,988,1,1,2259,127632, %U A350060 1039878,2009952,1039878,127632,2259,1 %N A350060 Triangle read by rows: T(n,k) is the number of labeled threshold graphs on vertex set [n] in which k dominating vertices are added in standard iterative construction, n >= 1 and 0 <= k <= n-1. %C A350060 Threshold graphs are constructed from a single vertex by iteratively adding isolated vertices (adjacent to nothing previously added) and dominating vertices (adjacent to everything previously added). The initial vertex is not considered to be a dominating vertex. %H A350060 D. Galvin, G. Wesley and B. Zacovic, <a href="https://arxiv.org/abs/2110.08953">Enumerating threshold graphs and some related graph classes</a>, arXiv:2110.08953 [math.CO], 2021. %F A350060 T(n,0) = 1 for n >= 1; T(2,1) = 1; T(n,k) = (Sum_{j=1..k} binomial(n, k+1)*A348576(k+1, j)*((j-1)!*A008277(n-k-1, j-1) + j!*A008277(n-k-1, j))) + (Sum_{j=1..n-k-1} binomial(n, k)*j!*A008277(k, j)*(A348576(n-k, j+1) + A348576(n-k, j))) for n >= 3, k >= 1. (See also equation (7) of paper by Galvin, Wesley and Zacovic.) %e A350060 Triangle begins: %e A350060 1; %e A350060 1, 1; %e A350060 1, 6, 1; %e A350060 1, 22, 22, 1; %e A350060 1, 65, 200, 65, 1; %e A350060 1, 171, 1265, 1265, 171, 1; %e A350060 1, 420, 6566, 15050, 6566, 420, 1; %e A350060 1, 988, 30156, 136346, 136346, 30156, 988, 1; %e A350060 1, 2259, 127632, 1039878, 2009952, 1039878, 127632, 2259, 1; %e A350060 ... %t A350060 eulerian[n_,m_] := eulerian[n,m] = %t A350060 Sum[((-1)^k)*Binomial[n+1,k]*((m+1-k)^n), {k,0,m+1}] (* eulerian[n, m] is an Eulerian number, counting the permutations of [n] with m descents *); %t A350060 op2[n_,k_] := op2[n,k] = %t A350060 Sum[(n-j)*eulerian[n-1,j-1]*Binomial[j-1,n-k-1], {j,1,n-1}] (* op2[n,k] counts ordered partitions of [n] with k parts, with first part having size at least 2 *); %t A350060 T[n_, 0] := T[n, 0] = 1; T[2, 1] = 1; T[2, k_] := T[2, k] = 0; %t A350060 T[n_, k_] := %t A350060 T[n, k] = %t A350060 Sum[Binomial[n, k + 1]* %t A350060 op2[k + 1, %t A350060 l]*(Factorial[l - 1]*StirlingS2[n - k - 1, l - 1] + %t A350060 Factorial[l]*StirlingS2[n - k - 1, l]) + %t A350060 Binomial[n, k]*Factorial[l]* %t A350060 StirlingS2[k, l]*(op2[n - k, l + 1] + op2[n - k, l]), {l, 1, %t A350060 n}] (* T[n, k] is number of threshold graphs on n vertices with k dominating vertices added in construction*); %t A350060 Table[T[n, k],{n,1,12},{k,0,n-1}] %Y A350060 Row sums are A005840. %Y A350060 Cf. A348576. %K A350060 nonn,tabl %O A350060 1,5 %A A350060 _David Galvin_, Dec 11 2021