cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350062 a(n) is the smallest number with the same prime signature as A156552(n), with a(1) = 0.

This page as a plain text file.
%I A350062 #7 Jan 29 2022 20:15:09
%S A350062 0,1,2,2,4,2,8,2,6,4,16,2,32,2,6,6,64,2,128,2,12,6,256,2,12,6,6,6,512,
%T A350062 6,1024,2,6,6,12,8,2048,2,30,6,4096,2,8192,2,6,24,16384,2,24,4,30,2,
%U A350062 32768,2,36,2,30,12,65536,2,131072,6,6,12,12,6,262144,6,6,2,524288,6,1048576,6,6,6,24,6,2097152,2,30,6
%N A350062 a(n) is the smallest number with the same prime signature as A156552(n), with a(1) = 0.
%H A350062 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F A350062 a(n) = A046523(A156552(n)).
%o A350062 (PARI)
%o A350062 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
%o A350062 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A350062 A350062(n) = if(1==n,0,A046523(A156552(n)));
%Y A350062 Cf. A046523, A156552, A350063, A350064 (rgs-transform).
%K A350062 nonn
%O A350062 1,3
%A A350062 _Antti Karttunen_, Jan 29 2022