This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350071 #12 Dec 15 2021 21:43:40 %S A350071 1,1,1,1,1,1,1,1,1,7,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,3,1,3,1,7,1,1,13,1, %T A350071 1,1,1,3,1,1,1,3,1,1,1,1,1,1,1,7,1,3,1,1,7,3,1,1,1,1,1,3,121,1,1,13,1, %U A350071 1,1,21,1,1,1,3,1,3,1,3,1,7,1,1,1,3,1,3,1,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1 %N A350071 a(n) = gcd(sigma(n^2), A003961(n^2)), where A003961 shifts the prime factorization of n one step towards larger primes, and sigma is the sum of divisors function. %H A350071 Antti Karttunen, <a href="/A350071/b350071.txt">Table of n, a(n) for n = 1..20000</a> %H A350071 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A350071 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A350071 a(n) = A342671(n^2). %F A350071 a(n) = A065764(n) / A350072(n). %t A350071 f1[p_, e_] := (p^(2*e + 1) - 1)/(p - 1); f2[p_, e_] := NextPrime[p]^(2*e); a[1] = 1; a[n_] := GCD[Times @@ f1 @@@ (f = FactorInteger[n]), Times @@ f2 @@@ f]; Array[a, 100] (* _Amiram Eldar_, Dec 12 2021 *) %o A350071 (PARI) %o A350071 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A350071 A342671(n) = gcd(sigma(n), A003961(n)); %o A350071 A350071(n) = A342671(n^2); %Y A350071 Cf. A000203, A000290, A003961, A065764, A350072. %K A350071 nonn %O A350071 1,10 %A A350071 _Antti Karttunen_, Dec 12 2021