This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350073 #14 Dec 15 2021 21:43:57 %S A350073 1,2,1,5,2,2,1,6,11,4,2,5,5,2,2,29,4,22,3,10,1,4,2,6,29,10,3,5,6,4,1, %T A350073 20,2,8,2,55,17,6,5,12,10,2,7,10,22,4,2,29,34,58,4,25,8,6,4,6,3,12,6, %U A350073 10,29,2,11,113,10,4,13,20,2,4,4,66,31,34,29,15,2,10,3,58,49,20,10,5,8,14,6,12,12,44,5,10 %N A350073 a(n) = A064989(sigma(n)), where A064989 is multiplicative with a(2^e) = 1 and a(p^e) = prevprime(p)^e for odd primes p. %H A350073 Antti Karttunen, <a href="/A350073/b350073.txt">Table of n, a(n) for n = 1..20000</a> %H A350073 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A350073 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A350073 Multiplicative with a(p^e) = A064989(1 + p + p^2 + ... + p^e). %F A350073 a(n) = A064989(A000203(n)) = A064989(A161942(n)). %t A350073 f[2, e_] := 1; f[p_, e_] := NextPrime[p, -1]^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[DivisorSigma[1, n]]; Array[a, 100] (* _Amiram Eldar_, Dec 12 2021 *) %o A350073 (PARI) %o A350073 A064989(n) = { my(f = factor(n)); for (i=1, #f~, f[i,1] = if(2==f[i, 1],1,precprime(f[i, 1]-1))); factorback(f); }; %o A350073 A350073(n) = A064989(sigma(n)); %Y A350073 Cf. A000203, A064989, A161942, A337343 (a(n) >= n), A348748, A348749. %Y A350073 Cf. also A326042, A350072. %K A350073 nonn,mult %O A350073 1,2 %A A350073 _Antti Karttunen_, Dec 12 2021