A350083 a(n) = (A006935(n) - 1) / ord(2,A006935(n)/2), where ord(k,m) is the multiplicative order of k modulo m.
1, 617, 1305, 9339, 225, 5297, 6985, 1549, 174233, 46549, 93701, 66879, 431087, 593887, 1288921, 446275, 43685, 1205, 3361, 2577225, 1313, 430739, 177301, 8541, 13067, 474525, 561301, 84725, 158873, 725725, 3851, 14019, 128861, 1090301, 2529, 430667, 541673
Offset: 1
Keywords
Examples
A006935(2) = 161038, so a(2) = (161038 - 1) / ord(2,161038/2) = 617. A006935(3) = 215326, so a(3) = (215326 - 1) / ord(2,215326/2) = 1305.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1319
Programs
-
PARI
list(lim) = my(v=[],d); forstep(k=1, lim, 2, if((2*k-1)%(d=znorder(Mod(2,k)))==0, v=concat(v,(2*k-1)/d))); v \\ gives a(n) for A347906(n) <= lim
Comments