cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350092 a(n) = floor(x^n) where x = 1 + sqrt(5)/2 = A176055.

This page as a plain text file.
%I A350092 #37 Dec 18 2021 23:33:27
%S A350092 1,2,4,9,20,42,90,191,405,857,1816,3848,8150,17263,36564,77445,164031,
%T A350092 347423,735855,1558567,3301098,6991839,14808952,31365865,66433969,
%U A350092 140709405,298027302,631231956,1336970739,2831749467,5997741619,12703420605,26906276616
%N A350092 a(n) = floor(x^n) where x = 1 + sqrt(5)/2 = A176055.
%C A350092 a(n+1)/a(n) tends to A176055 when n tends towards infinity.
%p A350092 seq(floor((1+sqrt(5)/2)^n), n=0..32);
%t A350092 a[n_] := Floor[(GoldenRatio + 1/2)^n]; Array[a, 33, 0] (* _Amiram Eldar_, Dec 14 2021 *)
%o A350092 (Python)
%o A350092 from sympy import floor, sqrt
%o A350092 def A350092(n): return floor((1+sqrt(5)/2)**n) # _Chai Wah Wu_, Dec 17 2021
%Y A350092 Cf. A176055, A058066 (x*n), A014217 (phi^n).
%K A350092 nonn,easy
%O A350092 0,2
%A A350092 _Michel Lagneau_, Dec 14 2021