cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350094 a(n) = Sum_{k=0..n} n CNIMPL k where CNIMPL = NOT(n) AND k is the bitwise logical converse non-implication operator (A102037).

Original entry on oeis.org

0, 0, 1, 0, 6, 4, 3, 0, 28, 24, 21, 16, 18, 12, 7, 0, 120, 112, 105, 96, 94, 84, 75, 64, 84, 72, 61, 48, 42, 28, 15, 0, 496, 480, 465, 448, 438, 420, 403, 384, 396, 376, 357, 336, 322, 300, 279, 256, 360, 336, 313, 288, 270, 244, 219, 192, 196, 168, 141, 112
Offset: 0

Views

Author

Kevin Ryde, Dec 14 2021

Keywords

Comments

The effect of NOT(n) AND k is to retain from k only those bits where n has a 0-bit. Conversely n AND k retains from k those bits where n has a 1-bit. Together they are all bits of k so that a(n) + A222423(n) = Sum_{k=0..n} k = n*(n+1)/2.

Crossrefs

Row sums of A102037.
Cf. A001196 (bit doubling).
Other sums: A222423 (AND), A350093 (OR), A224915 (XOR), A265736 (IMPL).

Programs

  • Maple
    with(Bits): cnimp := (n, k) -> And(Not(n), k):
    seq(add(cnimp(n, k), k = 0..n), n = 0..59); # Peter Luschny, Dec 14 2021
  • PARI
    a(n) = (3*fromdigits(binary(n),4) - n^2 - 2*n)/4;

Formula

a(n) = (A001196(n) - n*(n+2))/4.
a(2*n) = 4*a(n) + n.
a(2*n+1) = 4*a(n).