This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350105 #12 Feb 01 2024 08:39:04 %S A350105 0,0,1,3,9,22,52,112,238,490,999,2019,4065,8155,16345,32725,65489, %T A350105 131020,262090,524228,1048514,2097084,4194232,8388532,16777138, %U A350105 33554346,67108775,134217635,268435359,536870809,1073741719,2147483535,4294967181,8589934471,17179869059 %N A350105 Number of subsets of the initial segment of the natural numbers strictly below n which are not self-measuring. Number of subsets S of [n] with S != distset(S). %C A350105 We use the notation [n] = {0, 1, ..., n-1}. If S is a subset of [n] then we define the distset of S (set of distances of S) as {|x - y|: x, y in S}. We call a subset S of the natural numbers self-measuring if and only if S = distset(S). %H A350105 Winston de Greef, <a href="/A350105/b350105.txt">Table of n, a(n) for n = 0..3305</a> %F A350105 See the formulas in A350102. %F A350105 a(n) = 2^n - A350102(n). %o A350105 (SageMath) %o A350105 def A350105List(len): %o A350105 L = [0] * len %o A350105 b, z = 2, 2 %o A350105 for n in (2..len-1): %o A350105 b += sloane.A000005(n - 1) %o A350105 z += z %o A350105 L[n] = z - b %o A350105 return L %o A350105 print(A350105List(35)) %Y A350105 Cf. A350102, A350103, A349976. %K A350105 nonn %O A350105 0,4 %A A350105 _Peter Luschny_, Dec 16 2021