This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350107 #32 Oct 24 2023 17:37:35 %S A350107 1,6,14,31,45,81,101,150,191,253,285,401,439,527,623,752,802,979,1035, %T A350107 1233,1369,1509,1577,1901,2020,2186,2362,2642,2728,3136,3228,3549, %U A350107 3765,3983,4215,4772,4882,5126,5382,5932,6054,6630,6758,7202,7664,7960,8100,8936 %N A350107 a(n) = Sum_{k=1..n} k * floor(n/k)^2. %H A350107 Seiichi Manyama, <a href="/A350107/b350107.txt">Table of n, a(n) for n = 1..10000</a> %F A350107 a(n) = Sum_{k=1..n} k * Sum_{d|k} (2*d - 1)/d = 2 * A143127(n) - A024916(n). %F A350107 G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^k)^2. %F A350107 a(n) = Sum_{k=1..n} 2 * k * tau(k) - sigma(k). %t A350107 a[n_] := Sum[k * Floor[n/k]^2, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Dec 14 2021 *) %t A350107 Accumulate[Table[2*k*DivisorSigma[0, k] - DivisorSigma[1, k], {k, 1, 100}]] (* _Vaclav Kotesovec_, Dec 16 2021 *) %o A350107 (PARI) a(n) = sum(k=1, n, k*(n\k)^2); %o A350107 (PARI) a(n) = sum(k=1, n, k*sumdiv(k, d, (2*d-1)/d)); %o A350107 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (2*k-1)*x^k/(1-x^k)^2)/(1-x)) %o A350107 (PARI) a(n) = sum(k=1, n, 2*k*numdiv(k)-sigma(k)); %o A350107 (Python) %o A350107 from math import isqrt %o A350107 def A350107(n): return -(s:=isqrt(n))**3*(s+1)+sum((q:=n//k)*((k<<1)*((q<<1)+1)-q-1) for k in range(1,s+1))>>1 # _Chai Wah Wu_, Oct 24 2023 %Y A350107 Column 2 of A350106. %Y A350107 Cf. A000005 (tau), A024916, A143127, A222548, A350123, A350128. %K A350107 nonn %O A350107 1,2 %A A350107 _Seiichi Manyama_, Dec 14 2021