A350110
Triangle read by rows, T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-3,k-1) + T(n-3,k-2) + T(n-3,k-3) - T(n-4,k-3) - T(n-4,k-4) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1), T(n
1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 2, 0, 1, 3, 5, 4, 0, 0, 1, 4, 8, 8, 4, 2, 1, 1, 5, 12, 16, 13, 9, 3, 0, 1, 6, 17, 28, 30, 22, 9, 0, 0, 1, 7, 23, 45, 58, 51, 27, 9, 3, 1, 1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0, 1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 0; 1, 1, 1, 1; 1, 2, 3, 2, 0; 1, 3, 5, 4, 0, 0; 1, 4, 8, 8, 4, 2, 1; 1, 5, 12, 16, 13, 9, 3, 0; 1, 6, 17, 28, 30, 22, 9, 0, 0; 1, 7, 23, 45, 58, 51, 27, 9, 3, 1; 1, 8, 30, 68, 103, 108, 78, 40, 18, 4, 0; 1, 9, 38, 98, 171, 211, 187, 123, 58, 16, 0, 0; 1, 10, 47, 136, 269, 382, 399, 310, 176, 64, 16, 4, 1;
Links
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, On A Two-Parameter Family of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.9.8.
- Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:=If[k<0 || n
Formula
T(n,0) = 1.
T(n,n) = delta(n mod 3,0).
T(n,1) = n-2 for n>1.
T(3*j-r,3*j-p) = 0 for j>0, p=1,2, and r=1,...,p.
T(3*(j-1)+p,3*(j-1)) = T(3*j,3*j-p) = j^p for j>0 and p=0,1,2,3.
T(3*j+1,3*j-1) = 3*j(j+1)/2 for j>0.
T(3*j+2,3*j-2) = 3*(C(j+2,4) + C(j+1,2)^2) for j>1.
G.f. of row sums: (1-x)/((1-2*x)*(1+x^2-x^3)).
G.f. of antidiagonal sums: (1-x^2)/((1-x-x^2)*(1+x^3-x^6)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=2*k+1 if k>=0.
Comments