A350111 Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,3)-fences and n-k squares.
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 3, 4, 2, 0, 1, 3, 6, 7, 4, 0, 0, 1, 4, 9, 12, 8, 0, 0, 0, 1, 5, 13, 20, 16, 8, 4, 2, 1, 1, 6, 18, 32, 36, 28, 19, 12, 3, 0, 1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0, 1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 0; 1, 0, 0, 0; 1, 1, 1, 1, 1; 1, 2, 3, 4, 2, 0; 1, 3, 6, 7, 4, 0, 0; 1, 4, 9, 12, 8, 0, 0, 0; 1, 5, 13, 20, 16, 8, 4, 2, 1; 1, 6, 18, 32, 36, 28, 19, 12, 3, 0; 1, 7, 24, 50, 69, 69, 58, 31, 9, 0, 0; 1, 8, 31, 74, 120, 144, 127, 78, 27, 0, 0, 0; 1, 9, 39, 105, 195, 264, 265, 189, 81, 27, 9, 3, 1; 1, 10, 48, 144, 300, 458, 522, 432, 270, 132, 58, 24, 4, 0;
Links
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, On A Two-Parameter Family of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.9.8.
- Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
Crossrefs
Programs
-
Mathematica
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+k)/4],r=Mod[n+k,4]}, Coefficient[f[j]^(4-r)*f[j+1]^r,x,k]]; Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}] (* or *) T[n_,k_]:=If[k<0 || n
Formula
T(n,k) = T(n-1,k) + T(n-2,k-1) - T(n-3,k-1) + T(n-3,k-2) + T(n-4,k-1) + T(n-4,k-3) + 2*T(n-4,k-4) + T(n-5,k-2) + 2*T(n-5,k-3) - T(n-5,k-4) - T(n-6,k-3)-T(n-6,k-5) - T(n-7,k-4)-T(n-7,k-5) - T(n-7,k-6) - T(n-8,k-7)-T(n-8,k-8) + delta(n,0)*delta(k,0) - delta(n,2)*delta(k,1) - delta(n,3)*delta(k,2) - delta(n,4)*delta(k,4) with T(n
T(n,0) = 1.
T(n,n) = delta(n mod 4,0).
T(n,1) = n-3 for n>2.
T(4*j-r,4*j-p) = 0 for j>0, p=1,2,3, and r=1,...,p.
T(4*(j-1)+p,4*(j-1)) = T(4*j,4*j-p) = j^p for j>0 and p=0,1,2,3,4.
T(4*j+1,4*j-1) = 4*j(j+1)/2 for j>0.
T(4*j+2,4*j-2) = 4*C(j+2,4) + 6*C(j+1,2)^2 for j>1.
G.f. of row sums: (1-x-x^3)/((1-2*x)*(1-x^2)*(1+2*x^2+x^3+x^4)).
G.f. of antidiagonal sums: (1-x^2-x^3+x^4-x^6)/((1-x-x^2)*(1-x^4)*(1+3*x^4+x^8)).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=3*k+1 if k>=0.
Comments