A350112 Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.
1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 0, 0; 1, 0, 0, 0; 1, 0, 0, 0, 0; 1, 1, 1, 1, 1, 1; 1, 2, 3, 4, 5, 2, 0; 1, 3, 6, 10, 9, 4, 0, 0; 1, 4, 10, 16, 16, 8, 0, 0, 0; 1, 5, 14, 25, 28, 16, 0, 0, 0, 0; 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1; 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0; 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0; 1, 9, 40, 112, 217, 309, 346, 330, 223, 105, 27, 0, 0, 0;
Links
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Michael A. Allen, On A Two-Parameter Family of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.9.8.
- Michael A. Allen and Kenneth Edwards, On Two Families of Generalizations of Pascal's Triangle, J. Int. Seq. 25 (2022) Article 22.7.1.
Crossrefs
Programs
-
Mathematica
f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]]; T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]}, Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]]; Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]
Formula
T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-4 for n>3.
T(5*j-r,5*j-p) = 0 for j>0, p=1,2,3,4, and r=1,...,p.
T(5*(j-1)+p,5*(j-1)) = T(5*j,5*j-p) = j^p for j>0 and p=0,1,...,5.
T(5*j+1,5*j-1) = 5*j(j+1)/2 for j>0.
T(5*j+2,5*j-2) = 5*C(j+2,4) + 10*C(j+1,2)^2 for j>1.
T(n,k) = T(n-1,k) + T(n-1,k-1) for n >= 4*k+1 if k >= 0.
Comments