cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350112 Triangle read by rows: T(n,k) is the number of tilings of an (n+k)-board using k (1,4)-fences and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 2, 0, 1, 3, 6, 10, 9, 4, 0, 0, 1, 4, 10, 16, 16, 8, 0, 0, 0, 1, 5, 14, 25, 28, 16, 0, 0, 0, 0, 1, 6, 19, 38, 48, 32, 16, 8, 4, 2, 1, 1, 7, 25, 56, 80, 80, 60, 40, 25, 15, 3, 0, 1, 8, 32, 80, 136, 166, 157, 128, 95, 40, 9, 0, 0
Offset: 0

Views

Author

Michael A. Allen, Dec 22 2021

Keywords

Comments

This is the m=5 member in the sequence of triangles A007318, A059259, A350110, A350111, A350112 which give the number of tilings of an (n+k) X 1 board using k (1,m-1)-fences and n-k unit square tiles. A (1,g)-fence is composed of two unit square tiles separated by a gap of width g.
It is also the m=5, t=2 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(5*j+r-k,k) is the coefficient of x^k in (f(j,x))^(5-r)*(f(j+1,x))^r for r=0,1,2,3,4 where f(n,x) is one form of a Fibonacci polynomial defined by f(n+1,x)=f(n,x)+x*f(n-1,x) where f(0,x)=1 and f(n<0,x)=0.
T(n+5-k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 5.
Sum of (5j+r)-th antidiagonal (counting initial 1 as the 0th) is f(j)^(5-r)*f(j+1)^r where j=0,1,..., r=0,1,2,3,4, and f(n) is the Fibonacci number A000045(n+1).

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   0;
  1,   0,   0,   0;
  1,   0,   0,   0,   0;
  1,   1,   1,   1,   1,   1;
  1,   2,   3,   4,   5,   2,   0;
  1,   3,   6,  10,   9,   4,   0,   0;
  1,   4,  10,  16,  16,   8,   0,   0,   0;
  1,   5,  14,  25,  28,  16,   0,   0,   0,   0;
  1,   6,  19,  38,  48,  32,  16,   8,   4,   2,   1;
  1,   7,  25,  56,  80,  80,  60,  40,  25,  15,   3,   0;
  1,   8,  32,  80, 136, 166, 157, 128,  95,  40,   9,   0,   0;
  1,   9,  40, 112, 217, 309, 346, 330, 223, 105,  27,   0,   0,   0;
		

Crossrefs

Other members of the two-parameter family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354667 (m=2,t=5), A354668 (m=3,t=3).
Other triangles related to tiling using fences: A123521, A157897, A335964.

Programs

  • Mathematica
    f[n_]:=If[n<0,0,f[n-1]+x*f[n-2]+KroneckerDelta[n,0]];
    T[n_, k_]:=Module[{j=Floor[(n+k)/5], r=Mod[n+k,5]},
      Coefficient[f[j]^(5-r)*f[j+1]^r,x,k]];
    Flatten@Table[T[n,k], {n, 0, 13}, {k, 0, n}]

Formula

T(n,0) = 1.
T(n,n) = delta(n mod 5,0).
T(n,1) = n-4 for n>3.
T(5*j-r,5*j-p) = 0 for j>0, p=1,2,3,4, and r=1,...,p.
T(5*(j-1)+p,5*(j-1)) = T(5*j,5*j-p) = j^p for j>0 and p=0,1,...,5.
T(5*j+1,5*j-1) = 5*j(j+1)/2 for j>0.
T(5*j+2,5*j-2) = 5*C(j+2,4) + 10*C(j+1,2)^2 for j>1.
T(n,k) = T(n-1,k) + T(n-1,k-1) for n >= 4*k+1 if k >= 0.