This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
primes such that p^2 divides q-1.
%I A350115 #22 Dec 17 2021 20:40:35 %S A350115 20,52,68,116,148,164,171,212,244,292,333,356,388,404,436,452,548,596, %T A350115 628,657,692,724,772,788,916,932,964,981,1028,1076,1108,1124,1143, %U A350115 1172,1252,1268,1348,1396,1412,1467,1492,1556,1588,1604,1629,1636,1684,1732,1791,1796,1828,1844 %N A350115 Numbers p^2*q, p<q primes such that p^2 divides q-1. %C A350115 For these terms m, there are precisely 5 groups of order m, so this is a subsequence of A054397. %C A350115 Two of them are abelian: C_{p^2*q}, C_q X C_p X C_p = C_q X (C_p)^2, and the three others that are nonabelian are C_q : (C_p x C_p), and two nonisomorphic semi-direct products C_q : C_p^2. Here C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively. %D A350115 Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004. %e A350115 20 = 2^2*5 and 2^2 divides 5-1, hence 20 is a term. %e A350115 171 = 3^2*19 and 3^2 divides 19-1, hence 171 is another term. %t A350115 q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {2, 1} && Divisible[p[[2]] - 1, p[[1]]^2]]; Select[Range[2000], q] (* _Amiram Eldar_, Dec 14 2021 *) %o A350115 (PARI) isok(m) = {my(f=factor(m)); if (f[,2] == [2,1]~, my(p=f[1,1], q=f[2,1]); ((q-1) % p^2) == 0;);} \\ _Michel Marcus_, Dec 14 2021 %o A350115 (Python) %o A350115 from sympy import integer_nthroot, isprime, primerange %o A350115 def aupto(limit): %o A350115 aset, maxp = set(), integer_nthroot(limit, 4)[0] %o A350115 for p in primerange(1, maxp+1): %o A350115 m = p**2 %o A350115 for t in range(m, limit//m, m): %o A350115 if isprime(t+1): %o A350115 aset.add(p**2*(t+1)) %o A350115 return sorted(aset) %o A350115 print(aupto(1844)) # _Michael S. Branicky_, Dec 14 2021 %Y A350115 Other subsequences of A054397: A030078, A079704, A143928. %Y A350115 Subsequence of A054753. %K A350115 nonn %O A350115 1,1 %A A350115 _Bernard Schott_, Dec 14 2021 %E A350115 More terms from _Michel Marcus_, Dec 14 2021