This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350121 #37 May 14 2025 00:03:30 %S A350121 3,19,907,1747,2083,101467,350443,916507,1014787,6603283,27068563, %T A350121 45287587,226432243,243060283,3946895803,5571195667,9259384843, %U A350121 19633449763,229012273627,965558895907,2793054173947,5142304754563 %N A350121 Increasing sequence of primes p == 3 (mod 4) such that all of 2,3,5,...,prime(n) are primitive roots mod p. %C A350121 It is possible, although rather unlikely, that any primes congruent to 3 (mod 4) will appear in A213052. %C A350121 a(19) > 10^11. %e A350121 a(2) = 19 since 19 is the smallest prime (congruent to 3 (mod 4)) such that the first two primes (2 and 3) are primitive roots. %t A350121 max=0;Do[n=Prime@i;If[Mod[n,4]==3,k=1;While[MultiplicativeOrder[Prime@k,n]==n-1,k++];If[k-1>max,Print@n;max++]],{i,10^6}] (* _Giorgos Kalogeropoulos_, Dec 17 2021 *) %o A350121 (PARI) %o A350121 N=10^10; %o A350121 default(primelimit, N); %o A350121 A=2; %o A350121 { forprime (p=3, N, %o A350121 if (p%4==3, %o A350121 q = 1; %o A350121 forprime (a=2, A, %o A350121 if ( znorder(Mod(a, p)) != p-1, q=0; break() ); %o A350121 ); %o A350121 if ( q, A=nextprime(A+1); print1(p, ", ") ); %o A350121 ); %o A350121 ); } %Y A350121 Cf. A213052. %K A350121 nonn,more %O A350121 1,1 %A A350121 _Paul Vanderveen_, Dec 15 2021 %E A350121 a(19) from _Daniel Suteu_, Dec 20 2021 %E A350121 a(20)-a(21) from _Paul Vanderveen_, May 08 2025