cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350130 Integers m such that iterating the map f(x) = x^2 + 1 on m generates a number ending with m.

This page as a plain text file.
%I A350130 #18 Feb 16 2022 11:57:16
%S A350130 0,1,2,5,6,7,26,30,77,205,330,677,802,901,1205,2026,4330,4677,7802,
%T A350130 8901,48901,52026,71205,74330,107802,152026,271205,474330,904677,
%U A350130 948901,2152026,5904677,7271205,8948901,9107802,10474330,22152026,55904677,77271205,88948901
%N A350130 Integers m such that iterating the map f(x) = x^2 + 1 on m generates a number ending with m.
%C A350130 It takes 6 iterations for a term in the sequence to generate a number ending with the term itself. The numbers in the table below, except for those that begin with 0, are the terms with the numbers of digits (d) up to 10 in which the endings in the six iterations are: m1 -> m2 -> m3 -> m4 -> m5 -> m6 -> m1.
%C A350130    d          m1          m2          m3          m4          m5          m6
%C A350130   --  ----------  ----------  ----------  ----------  ----------  ----------
%C A350130    1           0           1           2           5           6           7
%C A350130    2          30          01          02          05          26          77
%C A350130    3         330         901         802         205         026         677
%C A350130    4        4330        8901        7802        1205        2026        4677
%C A350130    5       74330       48901       07802       71205       52026       04677
%C A350130    6      474330      948901      107802      271205      152026      904677
%C A350130    7     0474330     8948901     9107802     7271205     2152026     5904677
%C A350130    8    10474330    88948901    89107802    77271205    22152026    55904677
%C A350130    9   510474330   588948901   989107802   977271205   122152026   455904677
%C A350130   10  6510474330  1588948901  9989107802  9977271205  8122152026  3455904677
%o A350130 (Python)
%o A350130 for n in range(0, 10**11):
%o A350130     s = len(str(n)); t = n; L = set()
%o A350130     while t not in L:
%o A350130         L.add(t); t = (t*t+1) % 10**s
%o A350130         if t == n: print(n, end = ', ')
%o A350130 (PARI) isok(m) = {my(mm=m); for (i=1, 6, mm = mm^2+1;); !((mm-m) % 10^(#Str(m)));} \\ _Michel Marcus_, Feb 16 2022
%Y A350130 Cf. A002522, A003095, A033627.
%K A350130 nonn,base
%O A350130 1,3
%A A350130 _Ya-Ping Lu_, Dec 15 2021