cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350132 a(n) is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)^n, where tau(m) is the number of divisors of m (A000005).

This page as a plain text file.
%I A350132 #36 Sep 08 2024 19:55:35
%S A350132 34,7,41,919,18089,446081,27033161,663929729,74335064959,6132592231039
%N A350132 a(n) is the smallest number m such that tau(m-1) = tau(m+1) = tau(m)^n, where tau(m) is the number of divisors of m (A000005).
%C A350132 Triples of [tau(a(n) - 1), tau(a(n)), tau(a(n) + 1)] = [tau(a(n))^n, tau(a(n)), tau(a(n))^n]: [4, 4, 4], [4, 2, 4], [8, 2, 8], [16, 2, 16], [32, 2, 32], [64, 2, 64], [128, 2, 128], ...
%C A350132 Conjecture: a(n) is prime for all n >= 2, i.e., the sequence {a(n)} without the first term is the sequence of smallest primes p such that tau(p-1) = tau(p+1) = 2^n for n >= 2.
%C A350132 a(10) <= 6132592231039. - _Jon E. Schoenfield_, Jan 19 2022
%C A350132 From _David A. Corneth_, Jan 21 2022: (Start)
%C A350132 a(11) <= 864808145605249.
%C A350132 a(12) <= 246846832951283839.
%C A350132 a(13) <= 14552217960448488319. (End)
%e A350132 34 is the 1st term of A169834, so a(1) = 34.
%o A350132 (Magma) Ax:=func<n|exists(r){m: m in[2..10^6] | #Divisors(m - 1) eq #Divisors(m) ^ n and #Divisors(m + 1) eq #Divisors(m) ^ n} select r else 0>; [Ax(n): n in [1..6]];
%o A350132 (PARI) isok(m, n) = my(nd1=numdiv(m-1)); (nd1 == numdiv(m)^n) && (nd1 == numdiv(m+1));
%o A350132 a(n) = {my(m=2); while (!isok(m, n), m++); m;} \\ _Michel Marcus_, Dec 16 2021
%Y A350132 Cf. A000005, A169834, A343020, A343087.
%K A350132 nonn,more
%O A350132 1,1
%A A350132 _Jaroslav Krizek_, Dec 15 2021
%E A350132 a(8) from _Jon E. Schoenfield_ and _David A. Corneth_, Dec 15 2021
%E A350132 a(9) from _David A. Corneth_ and _Martin Ehrenstein_, Jan 14 2022
%E A350132 a(10) verified by _Martin Ehrenstein_, Jan 21 2022