This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350139 #10 Jan 07 2022 15:54:49 %S A350139 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0, %T A350139 0,4,0,0,0,2,0,2,0,0,0,0,0,10,0,0,0,0,0,2,0,2,0,0,0,12,0,0,0,4,0,2,0, %U A350139 0,0,2,0,20,0,0,0,0,0,2,0,10,0,0,0,12,0 %N A350139 Number of non-weakly alternating ordered factorizations of n. %C A350139 The first odd term is a(180) = 69, which has, for example, the non-weakly alternating ordered factorization 2*3*5*3*2. %C A350139 An ordered factorization of n is a finite sequence of positive integers > 1 with product n. Ordered factorizations are counted by A074206. %C A350139 We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. %F A350139 a(2^n) = A349053(n). %e A350139 The a(n) ordered factorizations for n = 24, 36, 48, 60: %e A350139 (2*3*4) (2*3*6) (2*3*8) (2*5*6) %e A350139 (4*3*2) (6*3*2) (2*4*6) (3*4*5) %e A350139 (2*3*3*2) (6*4*2) (5*4*3) %e A350139 (3*2*2*3) (8*3*2) (6*5*2) %e A350139 (2*2*3*4) (10*3*2) %e A350139 (2*3*4*2) (2*3*10) %e A350139 (2*4*3*2) (2*2*3*5) %e A350139 (3*2*2*4) (2*3*5*2) %e A350139 (4*2*2*3) (2*5*3*2) %e A350139 (4*3*2*2) (3*2*2*5) %e A350139 (5*2*2*3) %e A350139 (5*3*2*2) %t A350139 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A350139 whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}]; %t A350139 Table[Length[Select[Join@@Permutations/@facs[n],!whkQ[#]&&!whkQ[-#]&]],{n,100}] %Y A350139 Positions of nonzero terms are A122181. %Y A350139 The strong version for compositions is A345192, ranked by A345168. %Y A350139 The strong case is A348613, complement A348610. %Y A350139 The version for compositions is A349053, complement A349052. %Y A350139 As compositions with ones allowed these are ranked by A349057. %Y A350139 The complement is counted by A349059. %Y A350139 A001055 counts factorizations, strict A045778, ordered A074206. %Y A350139 A001250 counts alternating permutations, complement A348615. %Y A350139 A025047 counts weakly alternating compositions, ranked by A345167. %Y A350139 A335434 counts separable factorizations, complement A333487. %Y A350139 A345164 counts alternating perms of prime factors, with twins A344606. %Y A350139 A345170 counts partitions with an alternating permutation. %Y A350139 A348379 counts factorizations w/ alternating perm, complement A348380. %Y A350139 A348611 counts anti-run ordered factorizations, complement A348616. %Y A350139 A349060 counts weakly alternating partitions, complement A349061. %Y A350139 Cf. A003242, A138364, A339846, A339890, A344604, A345194, A347050, A347438, A347463, A347706, A349054. %K A350139 nonn %O A350139 1,24 %A A350139 _Gus Wiseman_, Dec 24 2021