cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350144 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^3.

This page as a plain text file.
%I A350144 #19 Feb 02 2024 02:39:07
%S A350144 1,8,28,65,127,225,353,522,759,1037,1369,1803,2273,2827,3539,4260,
%T A350144 5078,6095,7123,8301,9709,11103,12623,14449,16312,18270,20614,22920,
%U A350144 25358,28338,31130,34107,37627,41001,44761,48976,52974,57200,62136,66986,71908,77720,83140,88854
%N A350144 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^3.
%H A350144 Winston de Greef, <a href="/A350144/b350144.txt">Table of n, a(n) for n = 1..10000</a>
%F A350144 a(n) = Sum_{k=1..n} Sum_{d|k, k/d odd} d^3 - (d - 1)^3.
%F A350144 G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k-1)^3) * x^k/(1 - x^(2*k)).
%t A350144 a[n_] := Sum[Floor[n/(2*k - 1)]^3, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Dec 17 2021 *)
%o A350144 (PARI) a(n) = sum(k=1, n, (n\(2*k-1))^3);
%o A350144 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, k/d%2*(d^3-(d-1)^3)));
%o A350144 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^(2*k)))/(1-x))
%Y A350144 Column 3 of A350122.
%Y A350144 Cf. A007331.
%K A350144 nonn
%O A350144 1,2
%A A350144 _Seiichi Manyama_, Dec 16 2021