This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350147 #13 Dec 17 2021 11:09:58 %S A350147 1,2,4,5,7,11,13,14,21,29,31,39,41,57,87,88,90,133,135,173,253,317, %T A350147 319,335,398,526,756,932,934,1300,1302,1303,1991,2503,3001,3806,3808, %U A350147 4832,6918,7088,7090,9836,9838,13206,21860,25956,25958,25990,27097,35560,54766 %N A350147 a(n) = Sum_{k=1..n} floor(n/(2*k-1))^k. %F A350147 G.f.: (1/(1 - x)) * Sum_{j>=1} Sum{k>=1} k^j * x^(k*(2*j-1)) * (1 - x^(2*j-1)). %F A350147 Limit_{n->infinity} a(n)^(1/n) = exp(exp(-1)/2). - _Vaclav Kotesovec_, Dec 17 2021 %t A350147 a[n_] := Sum[Floor[n/(2*k - 1)]^k, {k, 1, n}]; Array[a, 50] (* _Amiram Eldar_, Dec 17 2021 *) %o A350147 (PARI) a(n) = sum(k=1, n, (n\(2*k-1))^k); %o A350147 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(j=1, N, (1-x^(2*j-1))*sum(k=1, N, k^j*x^(k*(2*j-1))))/(1-x)) %Y A350147 Cf. A345176, A350145. %K A350147 nonn %O A350147 1,2 %A A350147 _Seiichi Manyama_, Dec 16 2021