A350297 Triangle read by rows: T(n,k) = n!*(n-1)^k/k!.
1, 1, 0, 2, 2, 1, 6, 12, 12, 8, 24, 72, 108, 108, 81, 120, 480, 960, 1280, 1280, 1024, 720, 3600, 9000, 15000, 18750, 18750, 15625, 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936, 40320, 282240, 987840, 2304960, 4033680, 5647152, 6588344, 6588344, 5764801
Offset: 0
Examples
Triangle T(n,k) begins: ----------------------------------------------------------------- n\k 0 1 2 3 4 5 6 7 ----------------------------------------------------------------- 0 | 1, 1 | 1, 0, 2 | 2, 2, 1, 3 | 6, 12, 12, 8, 4 | 24, 72, 108, 108, 81, 5 | 120, 480, 960, 1280, 1280, 1024, 6 | 720, 3600, 9000, 15000, 18750, 18750, 15625, 7 | 5040, 30240, 90720, 181440, 272160, 326592, 326592, 279936. ...
Crossrefs
Programs
-
Maple
T := (n, k) -> (n!/k!)*(n - 1)^k: seq(seq(T(n, k), k = 0..n), n = 0..8); # Peter Luschny, Dec 24 2021
-
Mathematica
T[1, 0] := 1; T[n_, k_] := n!*(n - 1)^k/k!; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Dec 24 2021 *)
Formula
T(n, k) = binomial(n, k)*A350269(n, k). - Peter Luschny, Dec 25 2021
Comments