cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350157 Total number of nodes in the smallest connected component summed over all endofunctions on [n].

This page as a plain text file.
%I A350157 #24 Apr 27 2022 08:50:55
%S A350157 0,1,7,61,709,9911,167111,3237921,71850913,1780353439,49100614399,
%T A350157 1482061739423,48873720208853,1740252983702871,66793644836081827,
%U A350157 2740470162691675711,120029057782404141841,5575505641199441262767,274412698693082818767335,14236421024010426118259883
%N A350157 Total number of nodes in the smallest connected component summed over all endofunctions on [n].
%H A350157 Alois P. Heinz, <a href="/A350157/b350157.txt">Table of n, a(n) for n = 0..385</a>
%F A350157 a(n) = Sum_{k=1..n} k * A347999(n,k).
%e A350157 a(2) = 7 = 2 + 2 + 1 + 2: 11, 22, 12, 21.
%p A350157 g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
%p A350157 b:= proc(n, m) option remember; `if`(n=0, x^m, add(
%p A350157       b(n-i, min(m, i))*g(i)*binomial(n-1, i-1), i=1..n))
%p A350157     end:
%p A350157 a:= n-> (p-> add(coeff(p, x, i)*i, i=0..n))(b(n,n)):
%p A350157 seq(a(n), n=0..23);
%t A350157 g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
%t A350157 b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[
%t A350157      b[n - i, Min[m, i]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
%t A350157 a[n_] := Function[p, Sum[Coefficient[p, x, i]*i, {i, 0, n}]][b[n, n]];
%t A350157 Table[a[n], {n, 0, 23}] (* _Jean-François Alcover_, Apr 27 2022, after _Alois P. Heinz_ *)
%Y A350157 Column k=1 of A350202.
%Y A350157 Cf. A000312, A001865, A007778, A209327, A347999.
%K A350157 nonn
%O A350157 0,3
%A A350157 _Alois P. Heinz_, Dec 17 2021