This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350158 #16 Dec 17 2021 20:55:08 %S A350158 1,2,0,5,1,0,17,5,2,0,75,23,16,6,0,407,119,104,66,24,0,2619,719,688, %T A350158 558,336,120,0,19487,5039,4976,4554,3504,2040,720,0,164571,40319, %U A350158 40192,38862,34176,25320,14400,5040,0,1555007,362879,362624,358506,338304,287880,207360,115920,40320,0 %N A350158 The distribution of the distance from the first weak subcedance to 1 on permutations. %C A350158 Triangular array read by rows. For 0 <= k <= n-1, T(n,k) is the number of permutations of [n] for which the difference between the position of 1 and the position of the first weak subcedance is k. A weak subcedance of a permutation pi is an entry pi(i) such that pi(i) <= i. See link. %H A350158 David Callan, <a href="/A350158/a350158.pdf">The distribution of the distance from the first weak subcedance to 1 on permutations</a> %F A350158 T(1,0) = 1, T(n,0) = 2*(n-1)! + Sum_{j=1..n-2} j^(n-j-1)*j! for n >= 2, T(n,k) = (n-1)! - k^(n-k-1)*k! for 1 <= k <= n-1. %e A350158 Triangle T(n,k) begins: %e A350158 1; %e A350158 2, 0; %e A350158 5, 1, 0; %e A350158 17, 5, 2, 0; %e A350158 75, 23, 16, 6, 0; %e A350158 407, 119, 104, 66, 24, 0; %e A350158 2619, 719, 688, 558, 336, 120, 0; %e A350158 19487, 5039, 4976, 4554, 3504, 2040, 720, 0; %e A350158 164571, 40319, 40192, 38862, 34176, 25320, 14400, 5040, 0; %e A350158 ... %t A350158 a[1, 0] = 1; %t A350158 a[n_, 0] /; n >= 2 := 2 (n - 1)! + Sum[k^(n - k - 1) k!, {k, 1, n - 2}]; %t A350158 a[n_, k_] /; n > k >= 1 := (n - 1)! - k^(n - k - 1) k!; %t A350158 Flatten[Table[a[n, k], {n, 10}, {k, 0, n - 1}]] %Y A350158 Cf. A129591 is the first column. %Y A350158 Row sums give A000142. %K A350158 nonn,tabl %O A350158 1,2 %A A350158 _David Callan_, Dec 17 2021