cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350159 Number of subgroups of the dicyclic group Dic_n.

This page as a plain text file.
%I A350159 #26 Dec 23 2021 05:27:42
%S A350159 3,6,8,11,10,18,12,20,19,24,16,36,18,30,32,37,22,48,24,50,40,42,28,70,
%T A350159 37,48,48,64,34,84,36,70,56,60,56,103,42,66,64,100,46,108,48,92,90,78,
%U A350159 52,136,63,102,80,106,58,132,80,130,88,96,64,184,66,102,116
%N A350159 Number of subgroups of the dicyclic group Dic_n.
%H A350159 Hayder Baqer Shelash and A. R. Ashrafi, <a href="http://ijmsi.ir/article-1-1751-en.html">The Number of Subgroups of a Given Type in Certain Finite Groups</a>, Iranian Journal of Mathematical Sciences and Informatics, Vol. 16, No. 2 (2021), pp. 73-87.
%H A350159 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dicyclic_group">Dicyclic group</a>
%F A350159 a(n) = A000005(2n) + A000203(n) = A099777(n) + A000203(n).
%e A350159 a(2) = A000005(4) + A000203(2) = 3+3 = 6.
%e A350159 Given the fact that Dic_2 is isomorphic to the quaternion group Q_8, the subgroups of Dic_2 are isomorphic to the subgroups of Q_8 which are {1}, {1,-1}, {1,i,-1,-i}, {1,j,-1,-j}, {1,k,-1,-k} and Q_8.
%t A350159 a[n_] := DivisorSigma[0, 2*n] + DivisorSigma[1, n]; Array[a, 50] (* _Amiram Eldar_, Dec 17 2021 *)
%o A350159 (PARI) a(n) = numdiv(2*n) + sigma(n); \\ _Michel Marcus_, Dec 18 2021
%Y A350159 Cf. A000005, A000203, A099777, A345628.
%K A350159 nonn
%O A350159 1,1
%A A350159 _Firdous Ahmad Mala_, Dec 17 2021