This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350160 #14 Dec 19 2021 11:18:09 %S A350160 1,21,75,85,113,151,201,227,267,301,341,401,403,423,453,475,535,537, %T A350160 605,633,635,713,715,803,805,847,891,909,951,953,955,1003,1069,1073, %U A350160 1075,1129,1131,1191,1205,1267,1271,1273,1337,1365,1425,1427,1431,1433,1505 %N A350160 Odd numbers whose Collatz trajectory does not include 5 as a term. %C A350160 Odd terms of A308149. %C A350160 After a(2), each term's Collatz trajectory includes 256. %C A350160 A plot of a(n)/n vs. n has an interesting quasiperiodic form with a decreasing frequency. Does lim_{n->infinity} a(n)/n equal 32? %H A350160 Jon E. Schoenfield, <a href="/A350160/b350160.txt">Table of n, a(n) for n = 1..10000</a> %H A350160 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A350160 The Collatz trajectories of the first few terms are as follows: %e A350160 . %e A350160 n a(n) trajectory %e A350160 -- ---- ------------------------------------------------------------ %e A350160 1 1 1 %e A350160 2 21 21, 64, 32, 16, 8, 4, 2, 1 %e A350160 3 75 75, 226, 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1 %e A350160 4 85 85, 256, 128, 64, 32, 16, 8, 4, 2, 1 %e A350160 5 113 113, 340, 170, 85, 256, 128, 64, 32, 16, 8, 4, 2, 1 %t A350160 Select[Range[1, 1500, 2], !MemberQ[NestWhileList[If[OddQ[#1], 3*#1 + 1, #1/2] &, #, #1 > 1 &], 5] &] (* _Amiram Eldar_, Dec 18 2021 *) %Y A350160 Cf. A308149. %K A350160 nonn %O A350160 1,2 %A A350160 _Jon E. Schoenfield_, Dec 17 2021