cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350177 a(n) is the number of nonnegative integers that can be represented by lighting only n segments on a 9-segment display, used by the Russian postal service.

This page as a plain text file.
%I A350177 #6 Dec 19 2021 11:10:56
%S A350177 0,0,0,2,3,2,5,13,17,22,47,86,127,211,387,645,1044,1794,3086,5135,
%T A350177 8608,14674,24805,41631,70322,119069,200768,338429,571845,965823,
%U A350177 1629253,2749904,4643876,7838862,13229487,22333638,37704236,63642469,107427241,181351098,306133271
%N A350177 a(n) is the number of nonnegative integers that can be represented by lighting only n segments on a 9-segment display, used by the Russian postal service.
%C A350177 The nonnegative integers are displayed as in A350131.
%C A350177 Given the set S = {3, 4, 5, 6, 7}, the function f defined in S as f(3) = f(5) = 2, f(4) = 3, and f(6) = f(7) = 1, a(n) is equal to the difference between the number b(n) of S-restricted f-weighted integer compositions of n with that of n-6, i.e., b(n-6). The latter one provides the number of all those excluded cases where a nonnegative integer is displayed with leading zeros. b(n) is calculated as the sum of polynomial coefficients or extended binomial coefficients (see Equation 3 in Eger) where the index of summation is positive and it covers the numbers of possible digits that can be displayed by n segments (see first formula).
%H A350177 Steffen Eger, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Eger/eger6.html"> Restricted Weighted Integer Compositions and Extended Binomial Coefficients</a>, Journal of Integer Sequences, Vol. 16, Article 13.1.3, (2013).
%H A350177 Wikipedia, <a href="https://en.wikipedia.org/wiki/Postal_codes_in_Russia#/media/File:Russian_postal_codes.svg">Postal code template</a>.
%H A350177 Wikipedia, <a href="https://en.wikipedia.org/wiki/Postal_codes_in_Russia">Postal codes in Russia</a>.
%H A350177 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,3,2,1,1).
%H A350177 <a href="/index/Ca#calculatordisplay">Index entries for sequences related to calculator display</a>
%H A350177 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A350177 a(n) = b(n) - b(n-6), where b(n) = [x^n] Sum_{k=max(1,ceiling(n/7))..floor(n/2)} P(x)^k with P(x) = 2*x^3 + 3*x^4 + 2*x^5 + x^6 + x^7.
%F A350177 G.f.: x^3*(1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(2 + 3*x + 2*x^2 + x^3 + x^4)/(1 - 2*x^3 - 3*x^4 - 2*x^5 - x^6 - x^7).
%F A350177 a(n) = 2*a(n-3) + 3*a(n-4) + 2*a(n-5) + a(n-6) + a(n-7) for n > 13.
%e A350177 a(6) = 5 since 0, 11, 17, 71 and 77 are displayed by 6 segments.
%e A350177    _                 _    _        _  _
%e A350177   | |    /| /|    /| /    /  /|    /  /
%e A350177   |_|     |  |     | |    |   |    |  |
%e A350177   (0)     (11)    (17)     (71)    (77)
%t A350177 P[x_]:=2x^3+3x^4+2x^5+x^6+x^7; b[n_]:=Coefficient[Sum[P[x]^k, {k, Max[1, Ceiling[n/7]], Floor[n/2]}], x, n]; a[n_]:=b[n]-b[n-6]; Array[a, 41, 0]
%Y A350177 Cf. A002426, A004526, A331529, A331530, A343314, A343315, A350131.
%K A350177 nonn,base,easy
%O A350177 0,4
%A A350177 _Stefano Spezia_, Dec 18 2021