This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350184 #39 Feb 16 2025 08:34:02 %S A350184 2688,18816,26244,98784,222264,262144,331776,333396,666792,688128, %T A350184 1769472,2939328,3687936,4214784,4917248,13226976,19361664,38118276, %U A350184 71663616,111476736,133413966,161414428,169869312,184473632,267846264,368947264,476171136,1783627776 %N A350184 Numbers of multiplicative persistence 5 which are themselves the product of digits of a number. %C A350184 The multiplicative persistence of a number mp(n) is the number of times the product of digits function p(n) must be applied to reach a single digit, i.e., A031346(n). %C A350184 The product of digits function partitions all numbers into equivalence classes. There is a one-to-one correspondence between values in this sequence and equivalence classes of numbers with multiplicative persistence 5. %C A350184 There are infinitely many numbers with mp of 1 to 11, but the classes of numbers (p(n)) are postulated to be finite for sequences A350181.... %C A350184 Equivalently: %C A350184 This sequence consists of all numbers A007954(k) such that A031346(k) = 6. %C A350184 These are the numbers k in A002473 such that A031346(k) = 5. %C A350184 Or: %C A350184 - they factor into powers of 2, 3, 5 and 7 exclusively. %C A350184 - p(n) goes to a single digit in 5 steps. %C A350184 Postulated to be finite and complete. %H A350184 Daniel Mondot, <a href="/A350184/b350184.txt">Table of n, a(n) for n = 1..41</a> %H A350184 Daniel Mondot, <a href="https://oeis.org/wiki/File:Multiplicative_Persistence_Tree.txt">Multiplicative Persistence Tree</a> %H A350184 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MultiplicativePersistence.html">Multiplicative Persistence</a> %e A350184 2688 is in this sequence because: %e A350184 - 2688 goes to a single digit in 5 steps: p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0. %e A350184 - p(27648) = p(47628) = 2688, etc. %e A350184 331776 is in this sequence because: %e A350184 - 331776 goes to a single digit in 5 steps: p(331776)=2646, p(2646)=288, p(288)=128, p(128)=16, p(16)=6. %e A350184 - p(914838624) = p(888899) = 331776, etc. %t A350184 mx=10^10;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}]; %t A350184 Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==5&] (* code for 7-smooth numbers from A002473. - _Giorgos Kalogeropoulos_, Jan 16 2022 *) %o A350184 (Python) %o A350184 from math import prod %o A350184 def hd(n): %o A350184 while (n&1) == 0: n >>= 1 %o A350184 while (n%3) == 0: n /= 3 %o A350184 while (n%5) == 0: n /= 5 %o A350184 while (n%7) == 0: n /= 7 %o A350184 return(n) %o A350184 def pd(n): return prod(map(int, str(n))) %o A350184 def ok(n): %o A350184 if hd(n) > 9: return False %o A350184 return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and pd(s) < 10 %o A350184 print([k for k in range(10,476200000) if ok(k)]) %Y A350184 Intersection of A002473 and A046514 (all numbers with mp of 5). %Y A350184 Cf. A003001 (smallest number with multiplicative persistence n), A031346 (multiplicative persistence), A031347 (multiplicative digital root). %Y A350184 Cf. A350180, A350181, A350182, A350183, A350185, A350186, A350187 (numbers with mp 1 to 4 and 6 to 10 that are themselves 7-smooth numbers). %K A350184 nonn,base %O A350184 1,1 %A A350184 _Daniel Mondot_, Dec 18 2021