A350185 Numbers of multiplicative persistence 6 which are themselves the product of digits of a number.
27648, 47628, 64827, 84672, 134217728, 914838624, 1792336896, 3699376128, 48814981614, 134481277728, 147483721728, 1438916737499136
Offset: 1
Examples
27648 is in sequence because: - 27648 goes to a single digit in 6 steps: p(27648)=2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0. - p(338688) = p(168889) = 27648, etc.
Links
- Daniel Mondot, Multiplicative Persistence Tree
Crossrefs
Programs
-
Mathematica
mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}]; Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==6&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
-
Python
#this program may take 91 minutes to produce the first 8 members. from math import prod def hd(n): while (n&1) == 0: n >>= 1 while (n%3) == 0: n /= 3 while (n%5) == 0: n /= 5 while (n%7) == 0: n /= 7 return(n) def pd(n): return prod(map(int, str(n))) def ok(n): if hd(n) > 9: return False return (p := pd(n)) > 9 and (q := pd(p)) > 9 and (r := pd(q)) > 9 and (s := pd(r)) > 9 and (t := pd(s)) > 9 and pd(t) < 10 print([k for k in range(10,3700000000) if ok(k)])
Comments