A350186 Numbers of multiplicative persistence 7 which are themselves the product of digits of a number.
338688, 826686, 2239488, 3188646, 6613488, 14224896, 3416267673274176, 6499837226778624
Offset: 1
Examples
338688 is in this sequence because: - 338688 goes to a single digit in 7 steps: p(338688) = 27648, p(27648) = 2688, p(2688)=768, p(768)=336, p(336)=54, p(54)=20, p(20)=0. - p(4478976) = p(13477889) = 338688, etc.
Links
- Daniel Mondot, Multiplicative Persistence Tree
- Eric Weisstein's World of Mathematics, Multiplicative Persistence
Crossrefs
Programs
-
Mathematica
mx=10^16;lst=Sort@Flatten@Table[2^i*3^j*5^k*7^l,{i,0,Log[2,mx]},{j,0,Log[3,mx/2^i]},{k,0,Log[5,mx/(2^i*3^j)]},{l,0,Log[7,mx/(2^i*3^j*5^k)]}]; Select[lst,Length@Most@NestWhileList[Times@@IntegerDigits@#&,#,#>9&]==7&] (* code for 7-smooth numbers from A002473. - Giorgos Kalogeropoulos, Jan 16 2022 *)
Comments