This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350200 #9 Aug 25 2022 16:22:45 %S A350200 1,1,2,1,3,1,1,5,-4,-2,1,7,6,12,0,1,11,-30,-72,144,288,1,13,18,72,0, %T A350200 576,-1728,1,17,-42,-72,288,1152,-7104,-26240,1,19,30,-96,144,-1248, %U A350200 -11712,45248,222272,1,23,22,-188,488,-112,-11360,21184,450432,1636864 %N A350200 Array read by antidiagonals: T(n,k) is the determinant of the Hankel matrix of the 2*n-1 consecutive primes starting at the k-th prime, n >= 0, k >= 1. %H A350200 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a> %e A350200 Array begins: %e A350200 n\k| 1 2 3 4 5 6 7 8 %e A350200 ---+-------------------------------------------------------------- %e A350200 0 | 1 1 1 1 1 1 1 1 %e A350200 1 | 2 3 5 7 11 13 17 19 %e A350200 2 | 1 -4 6 -30 18 -42 30 22 %e A350200 3 | -2 12 -72 72 -72 -96 -188 -480 %e A350200 4 | 0 144 0 288 144 488 1800 2280 %e A350200 5 | 288 576 1152 -1248 -112 4432 -1552 15952 %e A350200 6 | -1728 -7104 -11712 -11360 -10816 29952 -89152 -57088 %e A350200 7 | -26240 45248 21184 -103168 -43264 -605440 -379264 271552 %e A350200 8 | 222272 450432 1068800 2022912 3927552 5399552 6315904 6861312 %e A350200 T(3,2) = 12, the determinant of the Hankel matrix %e A350200 [3 5 7] %e A350200 [5 7 11] %e A350200 [7 11 13]. %o A350200 (Python) %o A350200 from sympy import Matrix,prime,nextprime %o A350200 def A350200(n,k): %o A350200 p = [prime(k)] if n > 0 else [] %o A350200 for i in range(2*n-2): p.append(nextprime(p[-1])) %o A350200 return Matrix(n,n,lambda i,j:p[i+j]).det() %Y A350200 Cf. A350201. %Y A350200 Cf. A000012 (row n = 0), A000040 (row n = 1), A056221 (row n = 2 with opposite sign), A024356 (column k = 1), A071543 (column k = 2). %K A350200 sign,tabl %O A350200 0,3 %A A350200 _Pontus von Brömssen_, Dec 19 2021 %E A350200 Offset corrected by _Pontus von Brömssen_, Aug 25 2022