This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350201 #6 Dec 20 2021 18:40:42 %S A350201 23,2,25771,74159,245333129,245333113 %N A350201 a(n) is the smallest prime p such that the Hankel matrix of the 2*n-1 consecutive primes starting at p is singular; a(n) = 0 if no such p exists. %C A350201 a(n) is the k-th prime, where k is the smallest positive integer such that A350200(n,k) = 0. %C A350201 For a(n) = prime(k), a nontrivial linear relation c_1*prime(j) + ... + c_n*prime(j+n-1) = 0 holds for k <= j <= k+n-1. The vector (c_1, ..., c_n) is in the kernel of the Hankel matrix of (prime(k), ..., prime(k+2*n-2)). (Such a relation always holds for k <= j <= k+n-2, starting with an arbitrary sequence in place of the primes.) %H A350201 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hankel_matrix">Hankel matrix</a> %e A350201 Example %e A350201 | | | vector in the kernel %e A350201 n | a(n) | primepi(a(n)) | of the Hankel matrix %e A350201 --+-----------+---------------+------------------------------ %e A350201 3 | 23 | 9 | (7, 3, -8) %e A350201 4 | 2 | 1 | (6, -3, -2, 1) %e A350201 5 | 25771 | 2838 | (1, -2, 2, -2, 1) %e A350201 6 | 74159 | 7315 | (1, -2, 1, 1, -2, 1) %e A350201 7 | 245333129 | 13437898 | (0, 0, 0, 1, -3, 3, -1) %e A350201 8 | 245333113 | 13437897 | (0, 0, 0, 0, 1, -3, 3, -1) %e A350201 For n = 3, the relation 7*prime(j) + 3*prime(j+1) - 8*prime(j+2) = 0 holds for 9 <= j <= 11, i.e., %e A350201 7*23 + 3*29 - 8*31 = 0, %e A350201 7*29 + 3*31 - 8*37 = 0, %e A350201 7*31 + 3*37 - 8*41 = 0. %e A350201 The ten prime gaps following prime(13437901) = 245333213 are 20, 18, 16, 14, 12, 10, 8, 6, 4, 2 (see A349642). This gives both a(7) = prime(13437898) and a(8) = prime(13437897). %o A350201 (Python) %o A350201 from sympy import prime,nextprime,Matrix %o A350201 def A350201(n): %o A350201 p = [prime(j) for j in range(1,2*n)] %o A350201 while Matrix(n,n,lambda i,j:p[i+j]).det(): %o A350201 del p[0] %o A350201 p.append(nextprime(p[-1])) %o A350201 return p[0] %Y A350201 Cf. A349642, A349643, A350200. %K A350201 nonn,more %O A350201 3,1 %A A350201 _Pontus von Brömssen_, Dec 19 2021