This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350212 #43 Dec 05 2022 12:40:17 %S A350212 1,0,1,3,0,1,17,9,0,1,169,68,18,0,1,2079,845,170,30,0,1,31261,12474, %T A350212 2535,340,45,0,1,554483,218827,43659,5915,595,63,0,1,11336753,4435864, %U A350212 875308,116424,11830,952,84,0,1,262517615,102030777,19961388,2625924,261954,21294,1428,108,0,1 %N A350212 Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows. %H A350212 Alois P. Heinz, <a href="/A350212/b350212.txt">Rows n = 0..140, flattened</a> %F A350212 Sum_{k=0..n} k * T(n,k) = A055897(n). %F A350212 Sum_{k=1..n} T(n,k) = A350134(n). %F A350212 From _Mélika Tebni_, Nov 24 2022: (Start) %F A350212 T(n,k) = binomial(n, k)*|A069856(n-k)|. %F A350212 E.g.f. column k: exp(-x)*x^k / ((1 + LambertW(-x))*k!). %F A350212 T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j). (End) %e A350212 T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213. %e A350212 Triangle T(n,k) begins: %e A350212 1; %e A350212 0, 1; %e A350212 3, 0, 1; %e A350212 17, 9, 0, 1; %e A350212 169, 68, 18, 0, 1; %e A350212 2079, 845, 170, 30, 0, 1; %e A350212 31261, 12474, 2535, 340, 45, 0, 1; %e A350212 554483, 218827, 43659, 5915, 595, 63, 0, 1; %e A350212 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1; %e A350212 ... %p A350212 g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end: %p A350212 b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)* %p A350212 b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n)) %p A350212 end: %p A350212 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)): %p A350212 seq(T(n), n=0..10); %p A350212 # second Maple program: %p A350212 A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n): %p A350212 seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # _Mélika Tebni_, Nov 24 2022 %t A350212 g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}]; %t A350212 b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]* %t A350212 b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]]; %t A350212 T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]]; %t A350212 Table[T[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Mar 11 2022, after _Alois P. Heinz_ *) %Y A350212 Columns k=0-1 give: |A069856|, A348590. %Y A350212 Row sums give A000312. %Y A350212 T(n+1,n-1) gives A045943. %Y A350212 Cf. A001865, A008290, A008291, A055134, A055897, A060281, A086659, A124323, A350134, A349454. %K A350212 nonn,tabl %O A350212 0,4 %A A350212 _Alois P. Heinz_, Dec 19 2021