cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A350245 Numbers p^2*q, p > q odd primes such that q divides p+1.

Original entry on oeis.org

75, 363, 867, 1183, 1587, 1805, 2523, 4205, 5043, 6627, 8427, 10443, 11767, 15123, 17405, 20339, 20667, 23763, 26011, 30603, 31205, 34347, 38307, 39605, 48223, 51483, 56307, 59405, 65863, 66603, 76313, 83667, 89787, 96123, 96605, 109443, 111005, 115351, 116427
Offset: 1

Views

Author

Bernard Schott, Dec 21 2021

Keywords

Comments

For these terms m, there are precisely 3 groups of order m, so this is a subsequence of A055561.
The 3 groups are C_{p^2*q}, (C_p X C_p) X C_q and (C_p X C_p) : C_q, where C means cyclic groups of the stated order, the symbols X and : mean direct and semidirect products respectively.

Examples

			75 = 5^2 * 3, 5 and 3 are odd and 3 divides 5+1 = 6, hence 75 is a term.
1183 = 13^2 * 7, 13 and 7 are odd and 7 divides 13+1 = 14, hence 1183 is another term.
		

References

  • Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.

Crossrefs

Intersection of A054753 and A055561.
Other subsequences of A054753 linked with order of groups: A079704, A143928, A349495, A350115.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    P:= select(isprime, [seq(i,i=3..floor(sqrt(N/3)),2)]):
    g:= proc(p) local Q;
          Q:= numtheory:-factorset(p+1) minus {2};
          select(`<=`, map(q -> p^2*q, Q), N);
    end proc:
    sort(convert(`union`(op(map(g,P))),list)); # Robert Israel, Dec 28 2021
  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] + 1, p[[1]]]]; Select[Range[1, 2*10^5, 2], q] (* Amiram Eldar, Dec 21 2021 *)
  • Python
    from sympy import integer_nthroot, primerange
    def aupto(limit):
        aset, maxp = set(), integer_nthroot(limit**2, 3)[0]
        for p in primerange(3, maxp+1):
            pp = p*p
            for q in primerange(3, min(p-1, limit//pp)+1):
                if (p+1)%q == 0:
                    aset.add(pp*q)
        return sorted(aset)
    print(aupto(120000)) # Michael S. Branicky, Dec 21 2021

Extensions

More terms from Amiram Eldar, Dec 21 2021