A350245 Numbers p^2*q, p > q odd primes such that q divides p+1.
75, 363, 867, 1183, 1587, 1805, 2523, 4205, 5043, 6627, 8427, 10443, 11767, 15123, 17405, 20339, 20667, 23763, 26011, 30603, 31205, 34347, 38307, 39605, 48223, 51483, 56307, 59405, 65863, 66603, 76313, 83667, 89787, 96123, 96605, 109443, 111005, 115351, 116427
Offset: 1
Keywords
Examples
75 = 5^2 * 3, 5 and 3 are odd and 3 divides 5+1 = 6, hence 75 is a term. 1183 = 13^2 * 7, 13 and 7 are odd and 7 divides 13+1 = 14, hence 1183 is another term.
References
- Pascal Ortiz, Exercices d'Algèbre, Collection CAPES / Agrégation, Ellipses, problème 1.35, pp. 70-74, 2004.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
N:= 10^6: # for terms <= N P:= select(isprime, [seq(i,i=3..floor(sqrt(N/3)),2)]): g:= proc(p) local Q; Q:= numtheory:-factorset(p+1) minus {2}; select(`<=`, map(q -> p^2*q, Q), N); end proc: sort(convert(`union`(op(map(g,P))),list)); # Robert Israel, Dec 28 2021
-
Mathematica
q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; e == {1, 2} && Divisible[p[[2]] + 1, p[[1]]]]; Select[Range[1, 2*10^5, 2], q] (* Amiram Eldar, Dec 21 2021 *)
-
Python
from sympy import integer_nthroot, primerange def aupto(limit): aset, maxp = set(), integer_nthroot(limit**2, 3)[0] for p in primerange(3, maxp+1): pp = p*p for q in primerange(3, min(p-1, limit//pp)+1): if (p+1)%q == 0: aset.add(pp*q) return sorted(aset) print(aupto(120000)) # Michael S. Branicky, Dec 21 2021
Extensions
More terms from Amiram Eldar, Dec 21 2021
Comments