This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350246 #25 Jan 14 2022 11:24:24 %S A350246 11,3,18,15,42,189,306,369,6,1176,93,963,2202,750,408,498,267,1875, %T A350246 240,2751,798,1929,3402,6162,6195,4953,5004,8130,18591,20019,4461, %U A350246 1851,46866,29232,7206,24807,4644,23307,48528,21594,28236,4353,28212,3003,22611,50760 %N A350246 a(n) is the minimum positive integer k such that the concatenation of k, a(n-1), a(n-2), ..., a(2), and a(1) is the lesser of a pair of twin primes (i.e., a term of A001359), with a(1) = 11. %C A350246 First observed by J. A. Hervás Contreras (see the links). %C A350246 Every term (from the second on) is a multiple of 3. %H A350246 Chai Wah Wu, <a href="/A350246/b350246.txt">Table of n, a(n) for n = 1..100</a> %H A350246 José Antonio Hervás Contreras, <a href="https://www.gaussianos.com/forogauss/topic/nueva-propiedad-de-los-primos-gemelos/">¿Nueva propiedad de los primos gemelos?</a> %e A350246 11, 311, 18311, 1518311, and 421518311 are terms of A001359. %p A350246 terms := proc(n) %p A350246 local i, j, p, q, L, M: %p A350246 i, L, M := 0, [11], [11]: %p A350246 while numelems(L) < n do %p A350246 i, j := i+1, 0: %p A350246 while 1 > 0 do %p A350246 j, p := j+1, M[numelems(M)]: %p A350246 q := parse(cat(j, p)): %p A350246 if isprime(q) and isprime(q+2) then %p A350246 L, M := [op(L), j], [op(M), q]: %p A350246 break: fi: od: od: %p A350246 L: end: %o A350246 (Python) %o A350246 from itertools import count, islice %o A350246 from sympy import isprime %o A350246 def A350246_gen(): # generator of terms %o A350246 yield 11 %o A350246 s = '11' %o A350246 while True: %o A350246 for k in count(3,3): %o A350246 t = str(k) %o A350246 m = int(t+s) %o A350246 if isprime(m) and isprime(m+2): %o A350246 yield k %o A350246 break %o A350246 s = t+s %o A350246 A350246_list = list(islice(A350246_gen(),20)) # _Chai Wah Wu_, Jan 12 2022 %Y A350246 Cf. A001359. %K A350246 nonn,base %O A350246 1,1 %A A350246 _Lorenzo Sauras Altuzarra_, Dec 21 2021