This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350247 #20 Jan 20 2022 18:17:20 %S A350247 3,21,27,72,90,126,183,189,192,210,216,261,267,300,315,324,342,345, %T A350247 360,378,387,414,477,483,540,567,633,672,681,687,714,717,744,750,777, %U A350247 798,828,861,870,888,918,939,987,1011,1029,1038,1080,1182,1260,1266,1281 %N A350247 Positive integers k such that the concatenation of k and 11 is the lesser of a pair of twin primes (i.e., a term of A001359). %C A350247 Every term is a multiple of 3. %C A350247 Numbers k such that 100*k+11 and 100*k+13 are prime. - _Chai Wah Wu_, Jan 20 2022 %e A350247 311, 2111, 2711, 7211, and 9011 are terms of A001359. %p A350247 terms := proc(n) %p A350247 local k, p, L: %p A350247 k, L := 0, []: %p A350247 while numelems(L) < n do %p A350247 k := k+1: %p A350247 p := parse(cat(k, 11)): %p A350247 if isprime(p) and isprime(p+2) then L := [op(L), k]: fi: od: %p A350247 L: end: %t A350247 Select[Range[1282], AllTrue[# + {0, 2}, PrimeQ] &[100 # + 11] &] (* _Michael De Vlieger_, Dec 21 2021 *) %o A350247 (Python) %o A350247 from itertools import count, islice %o A350247 from sympy import isprime %o A350247 def A350247_gen(startvalue=3): # generator of terms >= startvalue %o A350247 for n in count(max(3,startvalue+(3-startvalue%3)%3),3): %o A350247 if isprime(100*n+11) and isprime(100*n+13): %o A350247 yield n %o A350247 A350247_list = list(islice(A350247_gen(),20)) # _Chai Wah Wu_, Jan 20 2022 %Y A350247 Cf. A001359, A350246. %K A350247 nonn,base %O A350247 1,1 %A A350247 _Lorenzo Sauras Altuzarra_, Dec 21 2021