This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A350248 #19 Dec 31 2021 19:59:12 %S A350248 1,0,0,0,1,0,1,0,1,0,1,3,0,1,7,0,1,12,0,1,18,12,0,1,25,45,0,1,33,110, %T A350248 0,1,42,220,55,0,1,52,390,286,0,1,63,637,910,0,1,75,980,2275,273,0,1, %U A350248 88,1440,4900,1820,0,1,102,2040,9520,7140,0,1,117,2805,17136,21420,1428 %N A350248 Triangle read by rows: T(n,k) is the number of noncrossing partitions of an n-set into k blocks of size 3 or more, n >= 0, 0 <= k <= floor(n/3). %H A350248 Andrew Howroyd, <a href="/A350248/b350248.txt">Table of n, a(n) for n = 0..1750</a> (rows 0..100) %F A350248 G.f.: A(x,y) satisfies A(x,y) = 1 + y*(x*A(x,y))^3/(1 - x*A(x,y)). %F A350248 T(n,k) = binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1) for n > 0. %e A350248 Triangle begins: %e A350248 1; %e A350248 0; %e A350248 0; %e A350248 0, 1; %e A350248 0, 1; %e A350248 0, 1; %e A350248 0, 1, 3; %e A350248 0, 1, 7; %e A350248 0, 1, 12; %e A350248 0, 1, 18, 12; %e A350248 0, 1, 25, 45; %e A350248 0, 1, 33, 110; %e A350248 0, 1, 42, 220, 55; %e A350248 0, 1, 52, 390, 286; %e A350248 0, 1, 63, 637, 910; %e A350248 0, 1, 75, 980, 2275, 273; %e A350248 0, 1, 88, 1440, 4900, 1820; %e A350248 0, 1, 102, 2040, 9520, 7140; %e A350248 ... %o A350248 (PARI) T(n)={my(p=1+O(x^3)); for(i=1, n\3, p=1+y*(x*p)^3/(1-x*p)); [Vecrev(t)| t<-Vec(p + O(x*x^n))]} %o A350248 {my(A=T(12)); for(i=1, #A, print(A[i]))} %o A350248 (PARI) T(n,k) = if(n==0 || k>n\3, k==0, binomial(n+1, n-k+1) * binomial(n-2*k-1, k-1) / (n+1)) \\ _Andrew Howroyd_, Dec 31 2021 %Y A350248 Columns k=2..5 are A055998, A350116, A350286, A350303. %Y A350248 Row sums are A114997. %Y A350248 Cf. A001263 (blocks of any size), A108263 (blocks of size 2 or more). %K A350248 nonn,tabf %O A350248 0,12 %A A350248 _Andrew Howroyd_ and _Janaka Rodrigo_, Dec 21 2021